• Title/Summary/Keyword: osteoblastic

Search Result 355, Processing Time 0.028 seconds

Effect of protein transduction domain fused-bone morphogenetic protein-2 on bone regeneration in rat calvarial defects (단백질 전달 영역 융합-Bone Morphogenetic Protein-2가 백서 두개골 결손부에서 골 조직 재생에 미치는 효과)

  • Um, Yoo-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho;Chai, Jung-Kiu;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.153-162
    • /
    • 2008
  • Purpose: Recombining bone morphogenetic protein (BMP) is usually acquiredfrom high level animals. Though this method is effective, its high cost limits its use. The purpose of this study was to evaluate the effect of bone morphogenetic protein-2 with protein transduction domain (BMP-2/PTD;TATBMP-2) on bone regeneration. Rat calvarial defect model and osteoblastic differentiation model using MC3T3 cell were used for the purpose of the study. Materials and Methods: MC3T3 cells were cultured until they reached a confluence stage. The cells were treated with 0, 0.1, 1, 10, 100, 500 ng/ml of BMP-2/PTD for 21 days and at the end of the treatment, osteoblastic differentiation was evaluated usingvon Kossa staining. An 8mm, calvarial, critical-size osteotomy defect was created in each of 48 male Spraque-Dawley rats (weight $250{\sim}300\;g$). Three groups of 16 animals each received either BMP-2/PTD (0.05mg/ml) in a collagen carrier, collagen only, or negative surgical control. And each group was divided into 2 and 8 weeks healing intervals. The groups were evaluated by histologic analysis(8 animals/group/healing intervals) Result: In osteoblastic differentiation evaluation test, a stimulatory effect of BMP-2/PTD was observed in 10ng/ml of BMP-2/PTD with no observation of dose-dependent manner. The BMP-2/PTD group showed enhanced local bone formation in the rat calvarial defect at 2 weeks. New bone was observed at the defect margin and central area of the defect. However, new bone formation was observed only in 50% of animals used for 2weeks. In addition, there was no new bone formation observed at 8 weeks. Conclusion: The results of the present study indicated that BMP-2/PTD(TATBMP-2) have an positive effect on the bone formation in vitro and in vivo. However, further study should be conducted for the reproducibility of the outcomes.

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

Osteoblastic Differentiation on Small-Scaled Grooved Patterns (미세수준의 그루브 패턴에서 조골세포 분화 연구)

  • Kim, Jin-Hee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.489-490
    • /
    • 2017
  • 골유착은 비골조직의 삽입없이 뼈와 금속간의 직접적인 접합으로 치과 임플란트나 정형외과적 기구의 임상적 성공여부를 판가름 짓는 중요한 요소이다. 현재까지 골유착을 향상시킨다 알려진 패턴은 일부 알려져 있지만, 표면패턴이 제한적이라 기대만큼 큰 발전을 이루지 못했다. 본 연구는 특정 그루브 패턴이 조골세포의 분화를 조절할 수 있음을 보여주면, 특정 패턴에서 조골세포의 분화를 강화시킬 수 있다는 계념은 치과의 임플란트나 정형외과 의료기기에 개발에 중요한 기초를 제공할 수 있으리라 사료된다.

  • PDF

Effects of Astragalus Membranaceus, Innamomum Cassia, Phellodendron Amurensis(BHH10) on MC3T3-E1 Cells Proliferation, Differntiation and Bone Mineralized Formation (MC3T3-E1 세포주에서 황기.계지.황백 처방(BHH10)의 골형성 촉진 효능 연구)

  • Lee, Mi Lim;Huh, Jeong Eun;Nam, Dong Woo;Seon, Jong In;Kang, Jung Won;Kim, Sung Hoon;Choi, Do Young;Lee, Jae Dong
    • Journal of Acupuncture Research
    • /
    • v.29 no.6
    • /
    • pp.11-21
    • /
    • 2012
  • Objectives : BHH10 is traditional medicine herb used for enhancing body resistance against various diseases. The aim of this study was to identify BHH10 extract induces osteogenic activity in human osteoblast-like MC3T3-E1 cells. Methods : MC3T3-E1, pre-osteoblast cell line, were treated with BHH10 of various concentrations($0.1{\mu}g/mL$, $1{\mu}g/mL$, $10{\mu}g/mL$). And then, the effect of BHH10 on osteoblast differentiation was examined by alkaline phosphatase(ALP) activity, von Kossa staining and RT-PCR for osteoblast differentiation markers such as osteocalcin(OCN), osteopontin(OPN). Results : BHH10 had dose-dependent effect on the viability of osteoblastic cells, and dose-dependently increased alkaline phosphatase(ALP) activity. BHH10 markedly increased mRNA expression for OCN, OPN in MC3T3-E1 cells. Also, BHH10 significantly induced mineralization in the culture of MC3T3-E1 cells. Conclusions : In conclusion, these results propose that BHH10 can play an important role in osteoblastic bone formation, osteogenesis, and may possibly lead to the development of bone-forming drugs.