• Title/Summary/Keyword: oscillation criteria

Search Result 54, Processing Time 0.026 seconds

BOUNDED OSCILLATION FOR SECOND-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS

  • Song, Xia;Zhang, Quanxin
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.447-454
    • /
    • 2014
  • Two necessary and sufficient conditions for the oscillation of the bounded solutions of the second-order nonlinear delay differential equation $$(a(t)x^{\prime}(t))^{\prime}+q(t)f(x[{\tau}(t)])=0$$ are obtained by constructing the sequence of functions and using inequality technique.

OSCILLATION OF HIGHER ORDER STRONGLY SUPERLINEAR AND STRONGLY SUBLINEAR DIFFERENCE EQUATIONS

  • Grace, Said R.;Han, Zhenlai;Li, Xinhui
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.455-464
    • /
    • 2014
  • We establish some new criteria for the oscillation of mth order nonlinear difference equations. We study the case of strongly superlinear and the case of strongly sublinear equations subject to various conditions. We also present a sufficient condition for every solution to be asymptotic at ${\infty}$ to a factorial expression $(t)^{(m-1)}$.

Oscillation of Linear Second Order Delay Dynamic Equations on Time Scales

  • Agwo, Hassan Ahmed
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.425-438
    • /
    • 2007
  • In this paper, we establish some new oscillation criteria for a second-order delay dynamic equation $$u^{{\Delta}{\Delta}}(t)+p(t)u(\tau(t))=0$$ on a time scale $\mathbb{T}$. The results can be applied on differential equations when $\mathbb{T}=\mathbb{R}$, delay difference equations when $\mathbb{T}=\mathbb{N}$ and for delay $q$-difference equations when $\mathbb{T}=q^{\mathbb{N}}$ for q > 1.

  • PDF

Avoiding Indefiniteness in Criteria for Maximum Likelihood Bearing Estimation with Arbitrary Array Configuration

  • Suzuki, Masakiyo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1807-1810
    • /
    • 2002
  • This paper presents a technique for avoid- ing indefiniteness in Maximum Likelihood (ML) criteria for Direction-of-Arrival (DOA) finding using a sensor ar- ray with arbitrary configuration. The ML criterion has singular points in the solution space where the criterion becomes indefinite. Solutions fly iterative techniques for ML bearing estimation may oscillate because of numerical instability which occurs due to the indefiniteness, when bearings more than one approach to the identical value. The oscillation makes the condition for terminating iterations complex. This paper proposes a technique for avoiding the indefiniteness in ML criteria.

  • PDF

OSCILLATION OF NONLINEAR EQUATIONS ON TIME SCALES

  • Li, Qiaoluan;Liu, Zhiyong;Dong, Wenlei;Liang, Haiyan;Zhang, Zhenguo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.327-334
    • /
    • 2009
  • By means of Riccati transformation techniques, we obtain some criteria which ensure that every solution of a nonlinear equation on time scales oscillates.

  • PDF

OSCILLATION CRITERIA FOR DIFFERENCE EQUATIONS WITH SEVERAL OSCILLATING COEFFICIENTS

  • Bohner, Martin;Chatzarakis, George E.;Stavroulakis, Ioannis P.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper presents a new sufficient condition for the oscillation of all solutions of difference equations with several deviating arguments and oscillating coefficients. Corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.

OSCILLATION AND NONOSCILLATION THEOREMS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rak-Joong;Kim, Dong-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1453-1467
    • /
    • 2007
  • By means of a Riccati transform some oscillation or nonoscillation criteria are established for nonlinear differential equations of second order $$(E_1)\;[p(t)|x#(t)|^{\alpha}sgn\;x#(t)]#+q(t)|x(\tau(t)|^{\alpha}sgn\;x(\tau(t))=0$$. $$(E_2),\;(E_3)\;and\;(E_4)\;where\;0<{\alpha}$$ and $${\tau}(t){\leq}t,\;{\tau}#(t)>0,\;{\tau}(t){\rightarrow}{\infty}\;as\;t{\rightarrow}{\infty}$$. In this paper we improve some previous results.

OSCILLATION CRITERIA OF DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rae Joong
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We give sufficient conditions that the homogeneous differential equations : for $t{\geq}t_0$(> 0), $$x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+p(t)x(t)=0,\\x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+F(t,x({\phi}(t)))=0$$, are oscillatory where $0{\leq}{\phi}(t)$, 0 < ${\phi}^{\prime}(t)$, $\lim_{t\to{\infty}}{\phi}(t)={\infty}$. and $F(t,u){\cdot}sgn$ $u{\leq}p(t)|u|$. We obtain comparison theorems.

OSCILLATION THEOREMS FOR PERTURBED DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rak-Joong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.241-252
    • /
    • 2008
  • By means of a Riccati transform and averaging technique some oscillation criteria are established for perturbed nonlinear differential equations of second order $(P_1)\;(p(t)x'(t))'+q(t)|x({\phi}(t)|^{{\alpha}+1}sgnx({\phi}(t))+g(t,\;x(t))=0$ $(P_2)$ and $(P_3)$ satisfying the condition (H). A comparison theorem and examples are given.