• Title/Summary/Keyword: oscillating-moving load

Search Result 4, Processing Time 0.022 seconds

Dynamics of the system consisting of the hollow cylinder and surrounding infinite elastic medium under action an oscillating moving ring load on the interior of the cylinder

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.525-554
    • /
    • 2018
  • The paper deals with the study of the dynamics of the oscillating moving ring load acting in the interior of the hollow circular cylinder surrounded by an elastic medium. The axisymmetric loading case is considered and the study is made by employing the exact equations and relations of linear elastodynamics. The focus is on the influence of the oscillation of the moving load and the problem parameters such as the cylinder's thickness/radius ratio on the critical velocities. At the same time, the dependence between the interface stresses and load moving velocity under various frequencies of this load, as well as the frequency response of the mentioned stresses under various load velocity are investigated. In particular, it is established that oscillation of the moving load can cause the values of the critical velocity to decrease significantly and at the same time the oscillation of the moving load can lead to parametric resonance. It is also established that the critical velocity decreases with decreasing of the cylinder's thickness/radiusratio.

3D Dynamics of the Oscillating-Moving Load Acting in the Interior of the Hollow Cylinder Surrounded with Elastic Medium

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.713-738
    • /
    • 2019
  • In the paper the dynamics of the oscillating moving load acting in the interior of the hollow cylinder surrounded with elastic medium is studied within the scope of the exact field equations of 3D elastodynamics. It is assumed that the oscillating load act on the certain arc of the internal circle of the cylinder's cross section and this load moves with constant velocity along the cylinder's axis. The corresponding 3D dynamic problem is solved by employing moving coordinate system, the exponential Fourier transform and the presentation these transforms with the Fourier series. The expressions of the transforms are determined analytically, however their originals are found numerically. Under the investigations carried out in the paper the main attention is focused on the so-called "gyroscopic effect", according to which, the influence of the vibration frequency on the values of the critical velocity and interface stresses are determined. Numerical results illustrated this effect are presented and discussed. In particular, it is established how the non-axisymmetricity of the problem acts on the influence of the load oscillation on its critical velocity and on the interface stresses.

Dynamics of the oscillating moving load acting on the hydroelastic system consisting of the elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.403-430
    • /
    • 2016
  • This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented and discussed and the focus is on the influence of the effect caused by the interaction between oscillation and moving of the external load. During these discussions, the corresponding earlier results by the authors are used which were obtained in the cases where, on the system under consideration, only the oscillating or moving load acts. In particular, it is established that the magnitude of the aforementioned interaction depends significantly on the vibration phase of the system.

Alternate Energy: Gravity Powered Rail Transportation Systems

  • Bojji, Rajaram
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • A simple pendulum shows how efficient gravity is in recovering energy. Any transportation is a linearly oscillating system; every load gains kinetic energy, but loses the same to come to a stop. The Gravity Power Towers comprise of a set of vertically moving heavy masses coupled, through microprocessor controlled continuously variable gear and cable system, to a horizontally rolling unit on wheels either on rail or road. The heavy masses move vertically up against gravity gaining potential energy while stopping a moving mass; move down under gravity force, giving out energy. The Tower thus accelerates or sustains the speed a rolling unit, and while decelerating, recover the kinetic energy. Speeds of 360 kmph can be attained. Recovery of energy varies from 98.5-70%; the longer the distance between stops, the lesser is recovery. The economical, omnipresent & eternal Gravity Power grants energy independence to many a nation. Global warming reduces.

  • PDF