• 제목/요약/키워드: oscillating pressure drop

검색결과 23건 처리시간 0.026초

BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구 (A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device)

  • 김진하;류재문;홍도천;홍석원
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

극저온 맥동 압력 조건에서의 재생기에 관한 실험적 연구 (Experimental Study on Regenerator Under Cryogenic Temperature and Pulsating Pressure Conditions)

  • 남관우;정상권;정은수
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1095-1101
    • /
    • 2002
  • An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of regenerator at cryogenic temperature under pulsating pressure condition. The regenerator was pressurized and depressurized by a compressor with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of a liquid nitrogen heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure drop across the regenerator was also measured to see if it could be predicted by a friction factor at steady flow condition. The operating frequency of pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stilting cryocoolers. First, the measured friction factor for typical wire screen mesh regenerator was nearly same as steady flow friction factor for maximum oscillating Reynolds number up to 100 at less than 9 Hz. For 60 Hz operations, however, the discrepancy between oscillating flow friction factor and steady flow one was noticeable if Reynolds number was higher than 50. Second, the ineffectiveness of regenerator was directly calculated from experimental data when the cold-end was maintained around 100 K and the warm-end around 293 K, which simulates an actual operating condition of cryogenic regenerator. Influence of the operating frequency on ineffectiveness was discussed at low frequency range.

A Study on Integrated OWC System within Turbine Effects

  • Liu, Zhen;Hyun, Beom-Soo;Hong, Key-Yong;Lee, Young-Yeon;Jin, Ji-Yuan
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.1-9
    • /
    • 2010
  • Oscillating Water Column is one of the most widely used converting systems all over the world. The operating performance is influenced by the efficiencies of the two converting stages in the OWC chamber-turbine integrated system. In order to study the effects of the pressure drop induced by the air turbine, the experiments using the impulse turbine and the orifice device are carried out in the wave simulator test rig. The numerical simulation utilizing the orifice and porous media modules is calculated and validated by the corresponding experimental data. The numerical wave tank based on the two-phase VOF model embedded with the above modules is employed to investigate the wave elevation, pressure variation inside the chamber and the air flow velocity in the duct. The effects of the air turbine on the integrated system and interaction among the wave elevation, pressure and air flow velocities variations are investigated, which demonstrates that the present numerical model are more accurate to be employed.

경사형 진동수주 파력발전장치의 비선형 터빈효과의 분석 (Analysis for Nonlinear Turbine Effect of Inclined OWC Wave Energy Converter)

  • 김정석;남보우;박세완;김경환;신승호;홍기용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.59-60
    • /
    • 2018
  • 진동수주형 파력발전장치는 수주, 터빈, 발전기 그리고 전력변환 장치 등이 연계된 복잡한 물리적인 특성을 나타낸다. 본 연구는 1/4 스케일의 모형시험을 통해 진동수주와 터빈의 물리적인 관계의 도출에 중점을 두고 있다. 진동수주실과 연성된 터빈의 공력특성은 오리피스를 활용하여 모사하였다. 진동수주실 성능평가에 핵심요소인 터빈효과는 오리피스를 통과하는 유속과 압력강하로 대표할 수 있다. 진동수주형 파력발전장치의 터빈효과는 모형시험에서 계측된 유속과 압력강하로부터 비선형적인 관계를 갖는 것을 확인하였다.

  • PDF

Performance Prediction of an OWC Wave Power Plant with 3-D Characteristics in Regular Waves

  • Hong, Do-Chun;Hong, Keyyong
    • 한국항해항만학회지
    • /
    • 제36권9호
    • /
    • pp.729-735
    • /
    • 2012
  • The primary wave energy conversion by a three-dimensional bottom-mounted oscillating water column (OWC) wave power device in regular waves has been studied. The linear potential boundary value problem has been solved following the boundary matching method. The optimum shape parameters such as the chamber length and the depth of the front skirt of the OWC chamber obtained through two-dimensional numerical tests in the frequency domain have been applied in the design of the present OWC chamber. Time-mean wave power converted by the OWC device and the time-mean second-order wave forces on the OWC chamber structure have been presented for different wave incidence angles in the frequency-domain. It has been shown that the peak period of $P_m$ for the optimum damping parameter coincides with the peak period of the time.mean wave drift force when ${\gamma}=0$.

Numerical Analysis for Hydrodynamic Performance of OWC Devices with Multiple Chambers in Waves

  • Kim, Jeong-Seok;Nam, Bo Woo
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.21-31
    • /
    • 2022
  • In recent years, various studies have been conducted on oscillating-water-column-type wave energy converters (OWC-WECs) with multiple chambers with the objective of efficiently utilizing the limited space of offshore/onshore structures. In this study, a numerical investigation based on a numerical wave tank was conducted on single, dual, and triple OWC chambers to examine the hydrodynamic performances and the energy conversion characteristics of the multiple water columns. The boundary value problem with the Laplace equation was solved by using a numerical wave tank based on a finite element method. The validity of the current numerical method was confirmed by comparing it with the measured data in the previous experimental research. We undertook a series of numerical simulations and observed that the water column motion of sloshing mode in a single chamber can be changed into the piston motion of different phases in multiple OWC chambers. Therefore, the piston motion in the multiple chambers can generate considerable airflow at a specific resonant frequency. In addition, the division of the OWC chamber results in a reduction of the time-dependent variability of the final output power from the device. As a result, the application of the multiple chambers leads to an increase of the energy conversion performance as well as a decrease of the variability of the wave energy converter.

새로운 도선감는 방법을 사용한 전기장을 이용한 스케일 제거 (Prevention of Particulate Scale with a new winding method in the Electronic Descaling Technology)

  • 김건우;안희섭;손창현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.180-186
    • /
    • 2000
  • This paper presents a new winding method in the electronic descaling(ED) technology. The ED technology Produces an oscillating electric field via the Faraday's law to Provide necessary molecular agitation to dissolved mineral ions. But present method gives another agitation force to mineral ions, which is Lorentz's force. Experiments were peformed at various Renolds number. A series of tests was conducted, measuring pressure drop across test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water of 1000ppm $CaCO_3$ was used throughout the tests. The results show that the new method accelerates collision of mineral ions and improvs efficiency of system.

  • PDF

새 도선 감는 방법을 적용한 전기장 이용 스케일 제거 (Prevention of Particulate Scale with a New winding Method in the Electronic Descaling Technology)

  • 손창현;구상모;김창수;김건우
    • 대한기계학회논문집B
    • /
    • 제26권5호
    • /
    • pp.658-665
    • /
    • 2002
  • This paper presents a new winding method in electronic descaling (ED) technology. Conventional ED technology Produces an oscillating electric field via Faraday's law to provide the necessary molecular agitation to dissolve mineral ions. However, the proposed method produces an additional agitation force for mineral ions, called Lorentz's force. Experiments were performed using various Renolds numbers. A series of tests was conducted to measure the pressure drop across the test section and the overall heat transfer coefficient as a function of time. In order to accelerate the rate of fouling, artificial hard water, 1000ppm CaCO$_3$, was used throughout the tests. The results show that the new winding method accelerates the collision of the mineral ions, thereby improving the system efficiency. The present study can develope more effective fouling-removing equipment with change of estabishment method of coil.

스털링 기관용 재생기에 관한 기초 연구 (III) - 복합메쉬 철망을 축열재로 한 재생기의 전열 및 유동손실 특성 - (Basic Study on the Regenerator of Stilting Engine (III) - Heat Transfer and Flow Friction Characteristic of the Regenerator with Combined Wire-mesh Matrix -)

  • 이시민;김태한
    • Journal of Biosystems Engineering
    • /
    • 제30권4호
    • /
    • pp.195-201
    • /
    • 2005
  • The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, several kinds of combined wire screen meshes were used. The results are summarized as follows; The packed meshes with high mesh no. in the side of heater part of regenerator showed effective than the packed meshes with low mesh no. in the side of cooler part of regenerator. The temperature difference and pressure drop of the regenerator were not made by the specific surface area of wire screen meshes but by the minimum free-flow area to the total frontal area. Among the No. 150 single screen meshes, 200-60 combined meshes, the 200-150-100 combined meshes showed the highest in effectiveness.

비정렬격자계와 체적포착법을 사용한 표면장력이 지배적인 다상유동 수치해석 (Numerical Simulation of Surface Tension-Dominant Multiphase Flows by Using Volume-Capturing Method and Unstructured Grid System)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제35권7호
    • /
    • pp.723-733
    • /
    • 2011
  • 본 연구에서는 비정렬격자계와 체적포착법을 사용하여 표면장력이 지배적인 다상유동의 수치해석 방법을 제시하였다. 먼저 표면장력에 대한 CSF(Continuum Surface Force) 모델을 비정렬격자계에 적용할 수 있도록 수치해석 방법을 확립시켜 Myong(2009)이 개발한 비정렬격자계와 체적포착법을 사용한 수치 해석코드에 삽입하였다. 테스트 문제로 오직 표면장력만이 존재하는 평형상태의 정적(static) 액적 및 비평형상태의 동적(dynamic) 액적 문제에 적용하여, 이 해석방법의 유용성과 정확도를 평가하였다. 연구결과, 매끄러운 곡률 계산을 위해 필요한 필터로 본 연구에서 제안한 Laplacian 필터와 함께 CSF 모델로는 밀도보정(density-scaled)한 CSF 모델이 예측성능이 우수한 것으로 나타났다. 또한 표면장력 계산을 위한 이 모델을 채용한 본 수치해석방법은 표면장력이 지배적인 다상유동인 평형상태의 정적 액적 및 비평형상태의 동적 액적 문제 모두에 대해 정확성과 유용성이 입증되었다.