• Title/Summary/Keyword: orthotropic steel bridges

Search Result 34, Processing Time 0.023 seconds

Effect of cross-beam on stresses revealed in orthotropic steel bridges

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.149-163
    • /
    • 2015
  • Orthotropic steel highway bridges exist almost everywhere in world, especially in Europe. The design of these bridges started very early in 20th century and ended with a conventional orthotropic steel bridge structure, which is today specified in DIN FB 103. These bridges were mostly built in 1960's and exhibit damages in steel structural parts. The primary reason of these damages is the high pressure that is induced by wheel- loads and therefore damages develop especially in heavy traffic lanes. Constructive rules are supplied by standards to avoid damages in orthotropic steel structural parts. These rules are first given in detail in the standard DIN 18809 (Steel highway- and pedestrian bridges- design, construction, fabrication) and then in DIN- FB 103 (Steel bridges). Bridges built in the past are today subject to heavier wheel loads and the frequency of loading is also increased. Because the vehicles produced today in 21st century are heavier than before and more people have vehicle in comparison with 20th century. Therefore dimensioning or strengthening of orthotropic steel bridges by using stiffer dimensions and shorter spans is an essence. In the scope of this study the complex geometry of conventional steel orthotropic bridge is generated by FE-Program and the effects of cross beam web thickness and cross beam span on steel bridge are assessed by means of a parameter study. Consequently, dimensional and constructional recommendations in association with cross beam thickness and span will be given by this study.

Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges (강상판교의 생애주기비용 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Lee, Kwang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.337-349
    • /
    • 2001
  • This study present an optimum deck and girder system design for minimizing the life-cycle cost (LCC) of orthotropic steel deck bridges. The problem of optimum LCC design of orthotropic steel deck bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and fatigue. To demonstrate the effect of LCC optimum design of orthotropic steel deck bridges, the proposed optimum LCC design is compared with the conventional method for orthotropic steel deck bridges design. From the numerical investigations, it may be positively stated that the proposed optimum design procedure for orthotropic steel deck bridges based on the LCC will lead to more rational, economical and safer design.

  • PDF

System Optimization of Orthotropic Steel-Deck Bridges by Load and Resistance Factor Design (LRFD에 의한 강상판형교의 시스템 최적설계)

  • 조효남;민대홍;김현우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.262-271
    • /
    • 1998
  • Recent, more and more steel deck bridges are adopted for the design of long span bridges and the upgrading of existing concrete deck bridges, mainly because of reduced self weight, higher stiffness and efficient erection compared to concrete decks. The main objective of this study is to propose on formulation of the design optimizations to develop an optimal desist program required for optimum desist for orthotropic steel-deck bridges. The objective function of the optimization is formulated as a minimum initial cost design problem. The behavior and design constraints are formulated based on the ASD and LRFD criteria of the Korean Bridge Design Code(1996). The optimum design program developed in this study consists of two steps. In the first step the system optimization of the steel box girder bridges is carried out. And in the second step the program provided the optimum design of the orthotropic steel-deck with close ribs. In the optimal design program the analysis module for the deck optimization is based on the Pelican Esslinger method. The optimizer module of the program utilizes the ADS(Automated Desist Synthesis) routines using the optimization techniques fuor constrained optimization. From the results of real application examples, The cost effectiveness of optimum orthotropic steel-deck bridges designs based on both ASD and LRFD methods is investigated by comparing the results with those of conventional designs, and it may be concluded that the design developed in this study seems efficient and robust for the optimization of orthotropic steel-deck bridges

  • PDF

Multi-Objective Optimization for Orthotrpic Steel Deck Bridges (강상판교의 다목적 최적설계)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This study proposed a muti-objective optimum design method for rational optimizing of orthotropic steel deck bridges. This multi-objective optimum design method was found to be effective in optimizing multi-objective problems, considering cost and deflection functions. It may ve difficult to optimize orthotropic steel deck bridges using a conventional optimization, since the bridges have several parts and show complex structural behaviors. Therefore, the Pareto curve can be obtained by performing the multi-objective optimization for real orthotropic steel deck bridges, using the multi-level technique with excellent efficiency. A reasonable and economical design can be attained using the Parato curve in the cost and deflection functions of the bridge. Thus, more reasonable design values can be determined based on a comparison with those using a conventional design procedure.

Multi-level Optimization for Orthotropic Steel Deck Bridges (강바닥판교의 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Daee-Hong;Lee, Kwang-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.439-448
    • /
    • 2000
  • A multi-level design synthesis (MLDA) algorithm for efficiently optimizing orthotropic steel deck bridges is proposed in the paper, because it is usually very difficult to optimize orthotropic steel deck bridges using a conventional single-level (CSL) algorithn since the bridges have a large number of members and show complex structural behaviors. In the proposed MLDS algorithms a coordination method is introduced to divide the bridges into main girders and orthotropic steel decks and decomposition method is also used to reduce the number of design variables of the decks for system level optimization. For efficient optimization of the bridges the MLDS algorithm incorporates the crucial approximation techliques such as constraints deletion and stress reanalysis. The constraint deletion technique for deflection is found to be very useful for the optimization problem of the bridges, since a deflection constraint is usually inactive in the design. Considering the complex system of the bridges, the proposed the efficient stress reanalysis technique may prove to be a very effective method, since it does not require expensive design sensitivity analyses. The applicability and robustness of the MLDS algorithm is demonstrated using various numerical examples and compared with other algorithm presently available so far.

  • PDF

The Analytical Study on the Cause of Fatigue Damage and the Improvement of Fatigue Performance for Orthotropic Steel Deck (강바닥판 피로손상 원인규명 및 피로성능 개선에 관한 해석적 연구)

  • Kyung Kab-Soo;Shin Dong-Ho;Kim Kyo-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.647-654
    • /
    • 2006
  • In orthotropic steel decks, it is likely to have defects due to fatigue damages because most of structural joints(the connection of longitudinal rib and transverse rib, the connection of deck plate and longitudinal rib) are connected by welds. However. orthotropic steel decks have many advantages. such as light weight and reduction of construction time. in comparison with concrete decks. Therefore. they are mostly used in long-span bridges and urban highway bridges. This study consists of the cause identication of fatigue damage and the suggestion of rational thickness on deck plate about the connection of deck plate and longitudinal rib. The results are as follows: fatigue damage cause at the connection of deck plate and longitudinal rib is local deformation in deck plate. And, rational thickness of deck plate is 16mm thickness.

  • PDF

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.

Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (II) - Steel Plate Girder Bridge (특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(II) - 강 판형교 -)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.141-146
    • /
    • 2001
  • A post-tensioned steel plate girder bridge with cross-beams is analyzed by specially orthotropic laminate theory. The cross-sections of both girders and cross-beams are WF types. The result is compared with that of the beam theory. This bridge with simple support is under uniformly distributed vertical load, and axial loads and moment due to post-tension. In this paper, finite difference method for numerical analysis of simple supported bridge is developed. Relatively exact solution is obtained even with small number of meshes. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used in design of new bridges, and maintenance and repair of old bridges.

  • PDF

Analysis Models for Automatic Design of Orthotropic Steel Deck Bridges (자동화설계를 위한 강상판교의 해석모델)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.363-372
    • /
    • 1999
  • This study proposes useful analysis models for automatic design of orthotropic steel deck bridges. For the selection of the best or the most proper analysis model this paper presents various analysis models based on grillage model, which are then compared with each other in terms of reliability of analysis, computing time and effectiveness. Also the selected analysis models are compared with Pelikan-Esslinger method well-known for orthotropic steel deck bridge analysis. The effectiveness of proposed analysis models is demonstrated by means of a numerical example that is a three-span continuous (60m+80m+60m=200m) orthotropic steel-box girder bridge.

  • PDF

Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (I) - Reinforced Concrete Slab Bridge (특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(I) - 철근 콘크리트 슬래브교 -)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.135-140
    • /
    • 2001
  • A post-tensioned reinforced concrete slab bridge is analyzed by specially orthotropic laminate theory. Symmetrically reinforced slab with tension and compression steel is considered for convenience of analysis. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of the rule of mixture. This bridge is under uniformly distributed vertical loads, and axial loads and end moments due to post-tensioning. In this paper, finite difference method is used for numerical analysis of this bridge. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used for design of new bridges, and maintenance and repair of old bridges.

  • PDF