• Title/Summary/Keyword: orthotropic property

Search Result 37, Processing Time 0.027 seconds

Calculation of Effective Material Property for Multi-Grain Orthotropic Material by BEM (경계요소법에 의한 다결정 직교 이방성 재료의 유효 재료 상수의 계산)

  • Kim, Dong-Eun;Lee, Sang-Hun;Jeong, Il-Jung;Lee, Seok-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.713-719
    • /
    • 2008
  • Most of the MEMS parts are made of multi-grain silicon wafer, which is the orthotropic material and its material direction is arbitrary. The reliability of the parts must be guaranteed in order to use for the commercial usage. The need of the structural analysis of its parts emerges an important factor. The material properties of the MEMS parts are calculated by the numerical method in order to reduce a material test. In this study, the effective elastic modulus and its Poisson's ratio are calculated by the boundary element method(BEM) and are compared with the results by the finite element method(FEM).

The study on the possibility of performance analysis for the compressive member using the numerical method (수치해석법을 활용한 압축부재 성능 해석의 가능성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.1
    • /
    • pp.26-39
    • /
    • 2010
  • This is a leading study to replace the structural analysis methodology on the specific traditional joint by a numerical analysis. Tests were carried out to test the compressive methodologies with the numerical results. The Japanese larch was used as a sample. The Orthotropic property of wood was specifically considered for the finite element numerical analysis. Linear numerical analysis and non-linear numerical analysis for the BEAM element and the two SOLID elements of ANSYS were used to analyze the compressive performance. In addition, more finely divided elements were used to raise the accuracy of the numerical result. Finally, the statistically significant differences were tested between that of the analytical and numerical results. It could be concluded that the SOLID 64 element shows the most optimum result when the non-linear analysis with the more finely divided element was used. However, finely dividing of the element is a considerable time consuming process, and it is quite difficult to raise the accuracy of the non-linear numerical analysis. Therefore, if considering the vertical displacement to be of the only interest, the BEAM element is more efficient than the SOLID element because the BEAM element is reflected as a simple line, which is less time consuming and difficult in dividing the elements. But, the BEAM element cannot accurately model the knot as a strength defect factor which is an important property in the orthotropic property of wood. Therefore, the SOLID element should be used to model the strength defect factor, knot, as it can be efficiently applied on the structural size flexure member which could be more strongly effected by the knot. In addition, it is useful at times when the failure types of members are to be more closely investigated, as the SOLID element is able to examine the local stress distribution of the member. The conclusion drawn by this study is of the good concordance between analytical results and numerical results of compressive wood members, but how orthotropic properties should only be considered. The numerical analysis on the specific Korean traditional joints will be based on the current study results.

  • PDF

Influence of Anisotropic Property Ratio of Orthotropic Material on Stress Components and Displacement Components at Crack tip Propagating with Constant Velocity Under Dynamic Mode I (동적모드 I 상태에서 직교 이방성체의 이방성비가 등속전파 균열선단의 응력성분과 변위성분에 미치는 영향)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 1995
  • When the crack in orthotropic material is propagating under dynamic model I load, influences of anisotropic property ratio $E_{L}$/ $E_{T}$ on stress and displacement around propagating crack tip are studied in this paper. When M<0.55 and .alpha.=90.deg.(.alpha.; the angle of fiber direction with crack propagating direction, M; crack propagation velocity/shear stress wave velocity), the influence of $E_{L}$/ $E_{T}$ on stress .sigma.$_{x}$, .sigma.$_{y}$, .tau.$_{xy}$ and .sigma.$_{\theta}$ is the greast on .sigma.$_{y}$. Except M<0.55 and .alpha.=90.deg., it is the greast on .sigma.$_{x}$ in any situation. Increasing $E_{L}$/ $E_{T}$, stress components are increased or decreased. When maximum stress is based, the stress .sigma.$_{x}$(.alpha.=90.deg.), .sigma.$_{y}$(.alpha.=0.deg.) and .tau.$_{xy}$ (.alpha.=90.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0. any stresses except .sigma.$_{*}$x/(.alpha.=0.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0.9. When .alpha.=90.deg., the influence of $E_{L}$/ $E_{T}$ on displacement U and V is V>U in any velocities of crack propagation, when .alpha.=0.deg., it is VU in M>0.75 and when $E_{L}$/ $E_{T}$ is increased, U and V are decreased in any conditions.sed in any conditions.tions.tions.tions.

Effects of elastic medium on buckling of microtubules due to bending and torsion

  • Taj, Muhammad;Hussain, Muzamal;Afsar, Muhammad A.;Safeer, Muhammad;Ahmad, Manzoor;Naeem, Muhammad N.;Badshah, Noor;Khan, Arshad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.491-501
    • /
    • 2020
  • Microtubules buckle under bending and torsion and this property has been studied for free microtubules before using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical buckling moment is about 6.04 nNnm for which the corresponding curvature is about θ = 1.33 rad /㎛ for embedded MTs, and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/㎛. Our results well proved the experimental findings.

A Study on the Estimation for the Compressive Strength of Member According to the Knot Types (옹이 형태별 소재의 압축강도 예측에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.170-177
    • /
    • 2010
  • Finite element numerical analysis was conducted with using the knot data which has a strong influence on the prediction of capacity for the structural wood member. Wood is a orthotropic property unlike other structural materials, so orthotropic property was applied. Knot was modelled as a cylinder shape, cone shape, and cubic shape. Compressive test was carried out to investigate the failure types and to calculate ultimate strengths for the wood members. Numerical model which can reflect the member size, number of knot, location of knot, size of knot was created and analyzed. By the numerical analysis using the ultimate compressive strength, numerical stress distribution types of each specimen was compared to real failure types for the test specimen. Cylinder shape modelling might be most reasonable, according to the necessary time for the analysis, the difficulty of element meshing, and the similarity of stress transfer around knot. Moreover, according to the stress and deformation distribution for the numerical analysis, failures or cracks of real specimen were developed in the vicinity of stress concentrated section and most transformed section. Based on the those results, numerical analysis could be utilized as a useful method to analyze the performance of bending member and tensile member, if only orthotropic property and knot modelling were properly applied.

A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge (장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구)

  • Park, Heeyoung;Lee, Junghun;Kwak, Byeongseok;Choi, Iehyun;Kim, Taewoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

A Simple and Accurate Analysis of Two Dimensional Concrete Slab for a Railroad Bridge by the Composite Laminates Plate Theory (복합적층판 이론에 의한 2차원 콘크리트 슬래브 철도교량의 정확하고 간단한 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, two dimensional concrete slabs for a railroad bridge were analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}$ = 0, and $D_{16}=D_{26}=0$ Bridge deck behaves as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis.

A Study on Post-Tensioned Reinforced Concrete Slab by the Beam Theory (포스트텐션된 철근콘크리트 슬래브의 보 이론에 의한 연구)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.24-29
    • /
    • 2009
  • In this paper, a post-tensioned reinforced concrete slab was analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Reinforced concrete slab behave as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis. The result of beam analysis was modified to obtain the solution of the plate analysis.

Analysis for the Thermal Behavior of Synchronous Linear Motor by EEM (FEM을 이용한 동기식 리니어모터 열특성의 해석)

  • Eun, In-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1461-1471
    • /
    • 2002
  • Linear motor has a lot of advantages in comparison with conventional feed mechanisms: high velocity, high acceleration, good positioning accuracy and a long lifetime. An important disadvantage of linear motor is its high power loss and heating up of motor and neighboring machine components in operation. For the application of the linear motors to precision machine tools an effective cooling method and thermal optimizing measures are required. In this paper Finite-Element-Method for the thermal behavior of synchronous linear motor is introduced, which is useful for the design and manufacturing of linear motors. By modeling the linear motor the orthotropic physical properties of the sheet metal and windings were considered and convective coefficient in the water cooler and to the surroundings was defined by analytical and experimental method. The calculated isothermal lines could analyze the heat flow in the linear motor.

Material Property Estimation of Paper for Dynamic Behavior Simulation (동적 거동 시뮬레이션을 위한 종이의 물성치 추정)

  • Lee, Geun-Pyo;Choi, Jin-Hwan;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.103-111
    • /
    • 2008
  • This study proposes a technique to estimate the material property of a paper by using an experimental methods and commercial CAE software. Under gravitation, if one side of the paper is attached to the ground, the opposite side of paper is largely deformed, and vibrates freely. Since the paper has an orthotropic characteristic due to its treatment, the deformations in two orthogonal directions of the dry paper are different. An experimental method to measure the static deformation of the paper introduces this phenomenon. And dynamic behavior, frequency of free vibration is measured. And then. virtual prototypes that can represent the static and dynamic behavior are modeled by using the commercial CAE software $RecurDyn^{MT}$/MTT3D, which has been widely used by the printer makers. While comparing the deformation and frequency from the experiment and simulation, a design optimization technique in the commercial CAE software of R-INOPL, $RecurDyn^{TM}$/AutoDesign is used to estimate the material property such as Young's modulus, shear modulus and density of the paper.