• Title/Summary/Keyword: orthotropic plate

Search Result 262, Processing Time 0.025 seconds

A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates

  • Bui, Tinh Quoc;Nguyen, Minh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.579-598
    • /
    • 2011
  • The present work mainly reports a significant development of a novel efficient meshfree method for vibration and buckling analysis of orthotropic plates. The plate theory with orthotropic materials is followed the Kirchhoff''s assumption in which the only deflection is field variable and approximated by the moving Kriging interpolation approach, a new technique used for constructing the shape functions. The moving Kriging technique holds the Kronecker delta property, thus it makes the method efficiently in imposing the essential boundary conditions and no special techniques are required. Assessment of numerical results is to accurately illustrate the applicability and the effectiveness of the proposed method in the class of eigenvalue problems.

Identification of Dominant Plate Component for Local Buckling of Orthotropic I-Shape Compression Member (직교이방성 I형 단면 압축재의 국부좌굴 주도요소판별)

  • 김학군;채수하;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.9-14
    • /
    • 2000
  • This paper presents the analytical results of local buckling of orthotropic I-shape compression members. Employing the equilibrium approach, the characteristic equation for local buckling of I-shape compression member is derived. Using the derived equation, the minimum buckling coefficients with respect to the ratio of width to thickness for the I-shape column are suggested as a graphical form. In addition, the dominant plate component initiating the local buckling of I-shape column is also identified by using the approximate solution and the results are plotted with dotted line on the minimum bucking coefficient curve.

  • PDF

Analysis of RC girder bridges using orthotropic plate elements (직교이방성판요소를 사용한 철근콘크리트거더교량의 해석)

  • Oh Byung Hwan;Park Jong Bum;Kim Se Hoon;Kim Ji Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.552-555
    • /
    • 2004
  • For the estimation of the load effects of the slab-an-girder type structures, the applicability of FEM analysis for RC T-type girder bridges using orthotropic plate elements has been studied in the present study. The present study indicates that the analysis by orthotropic plate elements for RC T-type girder bridges gives reasonable results for sectional force, including moments and shear. The results from the present method gives the values in between full composite and non-composite cases, which are reasonable when compared with actual test results.

  • PDF

A Simple Method of Vibration Analysis of Special Orthotropic Plate with A Pair of Opposite Edges Simply Supported and The Other Pair of Opposite Edges Free (양단단순-양단자유지지된 특별직교 이방성 적층복합판의 진동해석을 위한 간편법)

  • Kim Duk-Hyun;Kim, Kyeong-Jin;Hong, Chang-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.135-142
    • /
    • 1996
  • In this paper, a simple tut accurate method of vibration analysis of structural elements with or without attached mass/masses is presented. The method used has been developed by the senior author since 1974. This method is very effective for the plates with arbitrary boundary conditions and irregular sections. This method is applied to the special orthotropic Plate with two opposite edges simply supported and the other two opposite edges free. Such plate represents the most of the simply supported bridges/decks, including concrete and girders-cross beam systems. Detailed illustration is given for beams and plates for easy understanding. Some laminate orientation for which the special orthotropic equations can be applied are identified.

  • PDF

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.

Analysis of Rolled Beam Bridge by means of Specially Orthotropic Laminates Theory (특별직교이방성 적층판이론에 의한 압연형교의 해석)

  • Han, Bong-Koo;Lee, Chang-Soo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams are H-types. The results of application of this method to rolled beam bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. According to numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory.

  • PDF

Aluminum and E-glass epoxy plates behavior subjected to shock loading

  • Muhit, Imrose B.;Sakib, Mostofa N.;Ahmed, Sheikh S.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.155-168
    • /
    • 2017
  • The terrorist attacks and dangers by bomb blast have turned into an emerging issue throughout the world and the protection of the people and structures against terrorist acts depends on the prediction of the response of structures under blast and shock load. In this paper, behavior of aluminum and unidirectionally reinforced E-Glass Epoxy composite plates with and without focal circular holes subjected to shock loading has been identified. For isotropic and orthotropic plates (with and without holes) the classical normal mode approach has been utilized as a part of the processing of theoretical results. To obtain the accurate results, convergence of the results was considered and a number of modes were selected for plate with and without hole individually. Using a shock tube as a loading device, tests have been conducted to composite plates to verify the theoretical results. Moreover, peak dynamic strains, investigated by experiments are also compared with the theoretical values and deviation of the results are discussed accordingly. The strain-time histories are likewise indicated for a specific gauge area for aluminum and composite plates. Comparison of dynamic-amplification factors between the isotropic and the orthotropic plates with and without hole has been discussed.

The Modified Coefficient of the Orthotropic Rigidity for Stiffened Plates with Open Ribs (개단면 리브를 갖는 보강판의 직교이방성 강성 수정 계수)

  • Chu, Seok Beom;Choi, Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.23-32
    • /
    • 2005
  • In this paper, the modified coefficient of the orthotropic rigidity for stiffened plates with open ribs is proposed to improve the inaccurate results of the orthotropic plate analysis. For stiffened plates with rectangular and angle ribs having various aspect ratios and boundary conditions, the aspect ratio and the rigidity ratio are selected as parameters and the parametric study on the modified coefficient is performed. Analyzed results of stiffened plates modeling with the isotropic and orthotropic plate element show that the modified coefficient can be expressed as a function of the rigidity ratio for each rib space regardless of the aspect ratio in case of the aspect ratio under 1 and can be represented as a single union function without regard to rib spaces and aspect ratios in the other case. The results also shows that the effects of the boundary condition on the modified coefficient is small and coefficient functions have different values according to rib shapes. The application to examples shows that the modified coefficient of the orthotropic rigidity improves accuracy. Therefore, the orthotropic plate analysis of stiffened plates with open ribs can easily achieve more accurate results using the coefficient function proposed in this study

Structural Analysis of the Aluminum Extrusion Plate with Truss-Core (트러스 코어 헝상을 갖는 알루미늄 압출재의 구조 해석)

  • 장창두;이병삼;하윤석;김호경;송하철;문형석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • The sandwich plate has been widely used as an efficient structural member because it has high strength-to-weight and high stiffness-to-weight ratios. To properly design the aluminum extrusion plate , it is necessary to analyze structural behaviors of the extrusions, however, the aluminum extrusions have been rarely studied until now. In the optimization process through numerous iterative calculations, finite element analysis of the sandwich plate with hollow core section requires a considerable amount of computation time and cost. In this paper, the aluminum extrusion plate with truss-core is transformed into an equivalent homogeneous orthotropic plate with appropriate elastic constants. The procedure to evaluate accurate equivalent elastic constants is also established. Using these elastic constants, simple theoretical formulas of the stresses and deflection are proposed in case of the simply-supported orthotropic thick plate under uniform pressure. Through the comparison with the results by commercial FEM code(ANSYS), it is verified that the proposed simpified formula has a good efficiency and accuracy.

Analysis of Steel Bridge by means of Specially Orthotropic Plate Theory (특별직교이방성 판이론을 응용한 강교량의 해석)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams ar H-type. A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The results of application of this method to steel bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffiness on the natural frequency is rigorously investigated. According to numerical examination given in this paper the result by the plate theory is 2.43 times stiffer than of beam theory.

  • PDF