• Title/Summary/Keyword: orthotropic plate

Search Result 262, Processing Time 0.027 seconds

Numerical experiments on the determination of stress concentration factors in orthotropic perforated plates subjected to in - plane loading

  • Bambill, D.V.;Rossit, C.A.;Susca, A.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.549-561
    • /
    • 2009
  • As it is known, laminated composite materials are increasingly used in many technological applications, and in some instance, cutouts must be made into laminated panels for practical reasons, changing the stress distribution. The present study deals with the determination of the stress concentration factor that holes of square shape cause in an orthotropic plate subjected to distributed in - plane loading. Square holes of rounded corners in a rectangular plate are considered, and the effect of different combinations of axial and tangential forces applied to its middle plane at the external edges, is studied. The mutually perpendicular axes, which define the principal axes of orthotropy, are assumed in many different directions referred to the sides of the plate. Numerical experiments by means of a finite element code is performed, evaluating the influence of the fiber orientation with respect to the edges of the plate and the characteristics of the orthotropic materials since such structures do not exhibit easily predictable behavior.

Elastic Buckling Strength of Orthotropic Plate under Combined In-Plane Shear and Bending Forces (면내 전단력과 휨을 동시에 받는 직교이방성판의 탄성좌굴강도)

  • 윤순종;박봉현;정상균
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.46-52
    • /
    • 1999
  • In this paper result of an analytical investigation pertaining to the elastic buckling behavior of orthotropic plate under combined in-plane shear and bending forces is presented. The existing analytical solution developed for the isotropic plates is extended so that the orthotropic material properties can be taken into account in the buckling analysis of web plate. For the solution of the problems Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under combined in-plane shear and bending forces is presented. Brief discussion on the design criteria for the shear and bending interaction is also presented.

  • PDF

A study on the dynamic characteristics of the cord-rubber laminates rectangular plate by finite element method (유한요소법을 이용한 코오드-고무 복합판의 동적특성에 관한 연구)

  • 김두만;김항욱
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.51-64
    • /
    • 1986
  • There has been considerable interest over the last twenty years in the subject of the elastic properties of the cord-rubber laminate. This has been due to the rather intensive study of the composites materials characteristics brought about by the increased use of rigid composites materials characteristics brought about by the increased use of rigid composites in many structural applications. The object of this study is to obtain the natural frequencies and modes of the simply supported cord-rubber laminate plates prior to the study on the analysis of the dynamic properties of the pneumatic tire. To obtain these natural frequencies and modes, the 12 degrees of freedom orthotropic rectangular plate finite elements are developed. By using classical lamination theory, the stress-strain relations are represented. The governing equation for the finite element is derived by energy method. To find the natural frequencies and modes, he eigenvalues and corresponding eigenvectors are computed by the well known Jacobi power method. In order to verify the capability of this present finite element, the results of the specially orthotropic plate and the angle-ply laminate plate are compared with the analytical solution. The analytical and numberical results are in good agreement. The following problems of the simply supported plate are analyzed by the present finite element. a) the natural frequencies and mode shapes of the cord-rubber laminate plate for various aspect ratio. b) The natural frequencies and mode shapes of the orthotropic plate with the rectangular hole in its center.

  • PDF

Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory

  • Bourada, Fouad;Amara, Khaled;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1287-1306
    • /
    • 2016
  • The current research presents a buckling analysis of isotropic and orthotropic plates by proposing a new four variable refined plate theory. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only four variables. The governing equations for buckling analysis are deduced by utilizing the principle of virtual works. The analytical solution of a simply supported rectangular plate under the axial loading has been determined via the Navier method. Numerical investigations are performed by using the proposed model and the obtained results are compared with CPT solutions, FSDT solutions, and the existing exact solutions in the literature. It can be concluded that the developed four variable refined plate theory, which does not use shear correction coefficient, is not only simple but also comparable to the FSDT.

Approximate Solution for Finding the Buckling Strength of Orthotropic Rectangular Plates (직교이방성판의 좌굴강도를 구하기 위한 근사식의 개발)

  • J. H. Jung;S. J. Yoon;S. K. You
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.28-38
    • /
    • 2003
  • In this study, the analytical investigation of orthotropic rectangular plate is presented. The loaded edges are assumed to be simply supported and the unloaded edges could have elastically restrained boundary conditions including the extreme boundary condition such as simple, fixed, and free. Using the closed-form solutions, the buckling analyses of orthotropic plate with arbitrary boundary conditions are performed. Based on the data obtained by conducting numerical analysis, the simplified form of equation for finding the buckling coefficient of plate with elastically restrained boundary conditions at the unloaded edges is suggested as a function of aspect ratio, elastic restraint. and material properties of the plate. The results of buckling analyses by closed-form solution and simplified form of solution are compared for various orthotropic material properties. It is confirmed that the difference of results is less than 1.5%.

Elastic Analysis of Orthotropic Thick Plates with Perforated Many Holes (직교 이방성 관통 다공 후판의 탄성 해석)

  • Kim, Woo-Sik;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.59-65
    • /
    • 2002
  • The structures with many perforated openings are widely used as a load-carrying element in the fields of civil engineering works, top slab of prestressed concrete reactor vessel, petrochemical industries and the like. Perforated concrete plates are usually thick. Therefore, the effect of transverse shear deformation is not negligible. This paper describes a new analytical method of perforated plates combining both the finite element method for effective elastic constants and the usual method in solving orthotropic plate with transverse shear deformation.

  • PDF

Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates

  • Kutlu, Darilmaz
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.359-374
    • /
    • 2011
  • In this paper, the influence of fibre orientation and aspect ratio on stability analysis of simply supported skew plates subjected to in plane loading is studied by using a four noded hybrid plate finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Some numerical problems are solved and the effects of skew angle, aspect ratio, fibre orientation and loading type on the critical buckling loads are highlighted.

The Modified Coefficient of the Orthotropic Flexural Rigidity for Stiffened Plates with Rectangular Ribs Considering the Dimensions of Ribs (리브 제원을 고려한 평강 리브 보강판의 직교이방성 휨 강성 수정 계수)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • In this study, to improve on the inaccurate results of the orthotropic plate analysis, we aim to propose a modified coefficient of the orthotropic flexural rigidity for stiffened plates with rectangular ribs considering the dimensions of ribs. The sensitivity of the flexural rigidity and the maximum displacement according to the dimensions of stiffened plates were analyzed and the parametric study on the modified coefficient of the orthotropic flexural rigidity of stiffened plates was performed. The results show that the ratio of modified coefficients can be expressed as a function for each rib height, space and thickness regardless of plate thickness and the modified flexural rigidity can be easily estimated from the ratio functions of modified coefficients. The application of the coefficient function to various types of stiffened plates with different boundary conditions, aspect ratios, rib arrangement and loading size shows that the proposed function improves the accuracy of the orthotropic plate analysis compared with the results of the reference. Therefore, the orthotropic plate analysis of stiffened plates with rectangular ribs can easily achieve more accurate results using the coefficient function proposed in this study.

Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.509-523
    • /
    • 2019
  • In the present work, the buckling analysis of micro sandwich plate with an isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets is studied. In this research, two cases for core of micro sandwich plate is considered that involve five isotropic Devineycell materials (H30, H45, H60, H100 and H200) and an orthotropic material also two cases for facesheets of micro sandwich plate is illustrated that include piezoelectric layers reinforced by carbon and boron-nitride nanotubes and polymeric matrix reinforced by carbon nanotubes under temperature-dependent and hydro material properties on the elastic foundations. The first order shear deformation theory (FSDT) is adopted to model micro sandwich plate and to apply size dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential energy principle and then solved by analytical method. Also, the effects of different parameters such as size dependent, side ratio, volume fraction, various material properties for cores and facesheets and temperature and humidity changes on the dimensionless critical buckling load are investigated. It is shown from the results that the dimensionless critical buckling load for boron nitride nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell H200 is highest and lowest for H30. Also, the obtained results for micro sandwich plate with piezoelectric facesheets reinforced by carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, shipbuilding industries and biomedicine.

Vibration Analysis of Trapezoidally Corrugated Plates (사다리꼴 주름판의 진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.928-934
    • /
    • 2013
  • In this paper, the vibration characteristics of the trapezoidally corrugated plate are investigated by the analytical method. The corrugated plate is widely used as the structural elements because of its high stiffness and light weight. Because the corrugated plate is flexible in the corrugation direction and stiff in the transverse direction, it is treated as an equivalent orthotropic plate to analyze the corrugated plate simply. This equivalent plate must include both extensional and flexural effect to obtain the precise solution. The effective extensional and flexural stiffness of the equivalent plate are derived to consider these effects in the analysis. To demonstrate the validity of the proposed approach, the comparison is made with the previously published results and ANSYS solutions. Some numerical results are presented to check the effect of the geometric properties.