• Title/Summary/Keyword: orthorectification

Search Result 26, Processing Time 0.021 seconds

ORTHORECTIFICATION OF A DIGITAL AERIAL IMAGE USING LIDAR-DRIVEN ELEVATION INFORMATION

  • Yoon, Jong-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.181-184
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study sequentially utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using DTM and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

  • PDF

Ortho-rectification of a Digital Aerial Image using LiDAR-derived Elevation Model in Forested Area

  • Yoon, Jong-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using digital terrain model (DTM) and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method used in a previous research. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

A Study on the Efficient Orthorectification of KOMPSAT Image (아리랑 영상의 효율적 정사보정처리 연구)

  • Oh, Kwan-Young;Lee, Kwang-Jae;Hwang, Jeong-In;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2001-2010
    • /
    • 2021
  • The purpose of this study is to efficiently improve orthorectification of KOMPSAT images. As the development of domestic and abroad earth observation satellites accelerates, the number and amounts of satellite images acquired are rapidly increasing. Accordingly, various studies are being conducted to improve orthorectification for the acquired image more quickly and efficiently. This study focused on enhancing processing efficiency through algorithm improvement, except for improving hardware computing capabilities such as GPU. Accordingly, the algorithm was improved with the LUT-based RFM method, and compared and analyzed in terms of accuracy and time-efficiency that vary depending on offset settings.

Development of Automatic Airborne Image Orthorectification Using GPS/INS and LIDAR Data (GPS/INS와 LIDAR자료를 이용한 자동 항공영상 정사보정 개발)

  • Jang Jae-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.693-699
    • /
    • 2006
  • Digital airborne image must be precisely orthorectified to become geographical information. For orthorectification of airborne images, GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) elevation data were employed. In this study, 635 frame airborne images were produced and LIDAR data were converted to raster image for applying to image orthorectification. To derive images with constant brightness, flat field correction was applied to images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated by collecting 50 ground control points from arbitrary five images and LIDAR intensity image. As validation result, RMSE (Root Mean Square Error) was 0.387 as almost same as only two times of pixel spatial resolution. It is possible that this automatic orthorectification method of airborne image with higher precision is applied to airborne image industry.

Block Adjustment and Orthorectification for Multi-Orbit Satellite Images

  • Chen, Liang-Chien;Liu, Chien-Liang;Teo, Tee-Ann
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.888-890
    • /
    • 2003
  • The objective of this investigation is to establish a simple yet effective block adjustment procedure for the orthorectification of multi-orbit satellite images. The major works of the proposed scheme are: (1) adjustment of satellite‘s orbit accurately, (2) calculation of the error vectors for each tie point using digital terrain model and ray tracing technique, (3) refining the orbit using the Least Squares Filtering technique and (4) generation of the orthophotos. In the process of least squares filtering, we use the residual vectors on ground control points and tie points to collocate the orbit. In orthorectification, we use the indirect method to generate the orthoimage. Test areas cover northern Taiwan. Test images are from SPOT 5 satellite. Experimental results indicate that proposed method improves the relative accuracy significantly.

  • PDF

AUTOMATIC ORTHORECTIFICATION OF AIRBORNE IMAGERY USING GPS/INS DATA

  • Jang, Jae-Dong;Kim, Young-Seup;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.684-687
    • /
    • 2006
  • Airborne imagery must be precisely orthorectified to be used as geographical information data. GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) data were employed to automatically orthorectify airborne images. In this study, 154 frame airborne images and LIDAR vector data were acquired. LIDAR vector data were converted to raster image for employing as reference data. To derive images with constant brightness, flat field correction was applied to the whole images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated using 50 ground control points collected in arbitrary selected five images and LIDAR intensity image. In validation results, RMSE (Root Mean Square Error) was 0.365 smaller then two times of pixel spatial resolution at the surface. It is possible that the derived mosaicked airborne image by this automatic orthorectification method is employed as geographical information data.

  • PDF

A TEST ON THE GENERATION OF ADDIDTIONAL PRODUCT FROM THE KOMPSAT-2 TERMINAL FOR POLAR SYSTEM

  • Seo, Min-Ho;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.212-215
    • /
    • 2008
  • The final product generated from the KOMPSAT-2 Terminal for Polar System, K2PS, is an ellipsoid projected image. This leaves a relief displacement on the image by process of which the height value of subject area is constant. In this paper, orthorectification using the SRTM was used to remove such artifacts, and thereafter, the additional product that could be generated from the K2PS was discussed.

  • PDF

A Proposal for Processor for Improved Utilization of High resolution Satellite Images

  • Choi, Kyeong-Hwan;Kim, Sung-Jae;Jo, Yun-Won;Jo, Myung-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.211-214
    • /
    • 2007
  • With the recent development of spatial information technology, the relative importance of satellite image contents has increased to about 62%, the techniques related to satellite images have improved, and their demand is gradually increasing. Accordingly, a standard processing method for the whole process of collection from satellites to distribution of satellite images is required in many countries for efficient distribution of images and improvement of their utilization. This study presents the processor standardization technique for the preprocessing of satellite images including geometric correction, orthorectification, color adjustment, interpolation for DEM (Digital Elevation Model) production, rearrangement, and image data management, which will standardize the subjective, complex process and improve their utilization by making it easy for general users to use them

  • PDF

Fast Orthorectification for High Resolution Satellite Images Using Quadtree-Based Patch Backprojection

  • Chen, Liang-Chien;Teo, Tee-Ann;Rau, Jiann-Yeou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.687-689
    • /
    • 2003
  • High resolution satellite images have huge amount of pixels in common. Thus, an efficient method is required for the generation of orthoimages. Patch backprojection method is a feasible way to improve the efficiency with respect to the point-by-point patch backprojection. We will propose an Adaptive Patch that optimizes the patch size for different terrain variations. The essence of the patch optimization is quadrate structuring for terrain variations. The area of interest is, thus, sequentially subdivided to four quadrate tiles until a preset criterion is met. The experiment results indicated that the proposed method is efficient without losing accuracy.

  • PDF

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.