• Title/Summary/Keyword: orthogonality error

Search Result 47, Processing Time 0.028 seconds

Indirect Input Identification by Modal Filter Technique (모드필터방법에 의한 간접적 입력규명)

  • 김영렬;김광준
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.377-386
    • /
    • 1999
  • This paper is a study on model method for estimating system inputs from vibration responses, which is one of indirect input identification methods in frequency domain. The method has advantages over direct inverse method especially when points of operational inputs are inaccessible so that artificial excitation forces cannot be applied to obtain frequency response functions of the complete system. Procedures of extended modal model method are proposed and checked by numerical experiment. Mechanisms of error propagation, i.e., how errors in modal parameters such as poles nad mode shape vectors affect estimation of the input forces, are illustrated. Then, in order to counteract the error propagation, discrete modal filter approach is taken in this paper to compute the inversion of modal matrix in which the most serious errors seem to be generated. Further, a Reduced form of Modified Reciprocal Modal Vector(RMRMV) is proposed for estimating multiple inputs. It is shown to have smaller orthogonality error than MRMV.

  • PDF

Growing Algorithm of Wavelet Neural Network using F-projection (F-투영법을 이용한 웨이블렛 신경망의 성장 알고리즘)

  • 서재용;김용택;조현찬;김용민;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.15-168
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

DIRECTED STRONGLY REGULAR GRAPHS AND THEIR CODES

  • Alahmadi, Adel;Alkenani, Ahmad;Kim, Jon-Lark;Shi, Minjia;Sole, Patrick
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.497-505
    • /
    • 2017
  • The rank over a finite field of the adjacency matrix of a directed strongly regular graph is studied, with some applications to the construction of linear codes. Three techniques are used: code orthogonality, adjacency matrix determinant, and adjacency matrix spectrum.

Growing Algorithm of Wavelet Neural Network (웨이블렛 신경망의 성장 알고리즘)

  • 서재용;김성주;김성현;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

Systematic error calibration of 2-axis lateral shearing interferometer (2축 층밀리기 간섭계의 계통오차 보정)

  • 김승우;이혁교
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2002
  • We present a new self-calibration method to remove the systematic error of a 2-axis lateral shearing interferometer that has been specially designed for optical testing of aspheric optics. The method takes multiple measurements by rotating the test optics and extracts the systematic error by fitting the measured wavefronts into the Zernike polynomials. The method works with arbitrary azimuthal angles for test optics rotation, which offers an advantage of correcting the error induced by the non-orthogonality of the two axes of wavefront shearing as well as the error caused by the optical components of the interferometer system itself.

A Vector-Perturbation Based Lattice-Reduction using look-Up Table (격자 감소 기반 전부호화 기법에서의 효율적인 Look-Up Table 생성 방법)

  • Han, Jae-Won;Park, Dae-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.551-557
    • /
    • 2011
  • We investigate lattice-reduction-aided precoding techniques using Look-Up table (LUT) for multi-user multiple-input multiple-output(MIMO) systems. Lattice-reduction-aided vector perturbation (VP) gives large sum capacity with low encoding complexity. Nevertheless lattice-reduction process based on the LLL-Algorithm still requires high computational complexity since it involves several iterations of size reduction and column vector exchange. In this paper, we apply the LUT-aided lattice reduction on VP and propose a scheme to generate the LUT efficiently. Simulation results show that a proposed scheme has similar orthogonality defect and Bit-Error-Rate(BER) even with lower memory size.

Optimal Selection of Master States for Order Reduction (동적시스템의 차수 줄임을 위한 주상태의 최적선택)

  • 오동호;박영진
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.71-82
    • /
    • 1994
  • We propose a systematic method to select the master states, which are retained in the reduced model after the order reduction process. The proposed method is based on the fact that the range space of right eigenvector matrix is spanned by orthogonal base vectors, and tries to keep the orthogonality of the submatrix of the base vector matrix as much as possible during the reduction process. To quentify the skewness of that submatrix, we define "Absolute Singularity Factor(ASF)" based on its singular values. While the degree of observability is concerned with estimation error of state vector and up to n'th order derivatives, ASF is related only to the minimum state estimation error. We can use ASF to evaluate the estimation performance of specific partial measurements compared with the best case in which all the state variables are identified based on the full measurements. A heuristic procedure to find suboptimal master states with reduced computational burden is also proposed. proposed.

  • PDF

Stress intensity factors for 3-D axisymmetric bodies containing cracks by p-version of F.E.M.

  • Woo, Kwang S.;Jung, Woo S.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.245-256
    • /
    • 1994
  • A new axisymmetric crack model is proposed on the basis of p-version of the finite element method limited to theory of small scale yielding. To this end, axisymmetric stress element is formulated by integrals of Legendre polynomial which has hierarchical nature and orthogonality relationship. The virtual crack extension method has been adopted to calculate the stress intensity factors for 3-D axisymmetric cracked bodies where the potential energy change as a function of position along the crack front is calculated. The sensitivity with respect to the aspect ratio and Poisson locking has been tested to ascertain the robustness of p-version axisymmetric element. Also, the limit value that is an exact solution obtained by FEM when degree of freedom is infinite can be estimated using the extrapolation equation based on error prediction in energy norm. Numerical examples of thick-walled cylinder, axisymmetric crack in a round bar and internal part-thorough cracked pipes are tested with high precision.

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

An Equalization Technique for OFDM Systems in Time-Variant Multipath Channels (시변 다중경로 페이딩 채널에서의 OFDM 등화기법)

  • Jeon, Won-Gi;Chang, Kyung-Hi;Cho, Yong-Soo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.9-18
    • /
    • 1998
  • In this paper, an equalization technique for OFDM(orthogonal frequency division multiplexing) in a time-variant multipath fading environment is described. A loss of subchannel orthogonality due to time-varying multipath fading channels leads to interchannel interference (ICI) which increases the error floor in proportion to Doppler frequency. A simple frequency-domain equalizer which can compensate the effect of ICI caused by time variation of multipath fading channel is proposed by modifying the previous frequency-domain equalization technique with taking into account only the ICI terms significantly affecting the error performance. The effectiveness of the proposed approach is demonstrated via computer simulation by applying it to OFDM systems when the multipath fading channel is slowly time variant.

  • PDF