• Title/Summary/Keyword: orthogonal waveform

Search Result 33, Processing Time 0.022 seconds

Improvement in the Channel Capacity in Visible Light Emitting Diodes using Compressive Sensing (압축센싱기법을 이용한 가시광 무선링크 전송용량 증가기술 연구)

  • Jung, Eui-Suk;Lee, Yong-Tae;Han, Sang-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6296-6302
    • /
    • 2014
  • A new technique, which can increase the channel bandwidth in an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a light emitting diode (LED), is proposed. The technique uses adaptive sampling to convert an OFDM signal to a sparse waveform. In compressive sensing (CS), a sparse signal that is sampled below the Nyquist/Shannon limit can be reconstructed successively with sufficient measurements. The data rate of the proposed CS-based visible light communication (VLC)-OFDM link increases from 30.72 Mb/s to 51.2 Mb/s showing an error vector magnitude (EVM) of 31 % at the quadrature phase shift keying (QPSK) symbol.

Performance Analysis of Multicarrier CDMA System with M-ar Orthogonal Signaling in Multipath Fading Channel (다중 경로 페이딩 채널에서 M 진 직교 신호화를 적용한 다중 반송파 CDMA 시스템의 성능 분석)

  • Park, Kyoung-Suk;Kim, Hang-Rae;Kim, Nam;Park, Sung-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.391-400
    • /
    • 2001
  • In this paper, the performance of a multicarrier CDMA system applying M-ary orthogonal signaling and adaptive subchannel allocation scheme is analyzed for forward links in Rayleigh fading channel. Also, the effect of error caused by subchannel allocation is analyzed. In the proposed system, each DS waveform is transmitted over the subchannel having the biggest fading among L subchannels. Considering M-ary orthogonal signaling and 4 subchannels, the BER of $10^{-3}$ is satisfied if SNRs are 7.33 dB, 5.33 dB, and 4.47 dB for k = 1, 2, and 3, respectively. Therefore, SNR is decreased as k is increased. If the error of subchannels exists, the BER of $10^{-3}$ is met if SNR is 8.18 dB in the absence of M-ary orthogonal signaling. So, a required SNR is declined about 0.85 dB. Adding the M-ary orthogonal signaling with k = 4, it is observed that the multicarrier CDMA system has performance improvement because a required SNR is 5.44 dB.

  • PDF

An Adaptive Companding Scheme for Peak-to-average Power Ratio Reduction in OFDM Systems

  • Mazahir, Sana;Sheikh, Shahzad Amin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4872-4891
    • /
    • 2015
  • Orthogonal frequency division multiplexing (OFDM) signals suffer from the problem of high peak-to-average power ratio (PAPR), which complicates the design of analog front-end of the system. Companding is a well-known PAPR reduction technique that involves transforming signal amplitudes using a deterministic function. OFDM signal amplitude, on average, is Rayleigh distributed but the distribution can vary significantly from symbol to symbol, especially when constellation size increases. In this paper, a new adaptive companding scheme is proposed along with its design methodology aiming at optimizing the compander performance by accommodating this variation in its design. This is achieved by designing compander parameters separately for statistically dissimilar symbols in OFDM waveform and making the compander select from these parameters, during run-time, according to the features of input symbols.

Neural Network Cubes (N-Cubes) for Unsupervised learning in Gray-Scale noise

  • Lee, Won-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.571-576
    • /
    • 1999
  • We consider a class of auto-associative memories namely N-Cubes (Neural-network Cubes) in which 2-D gray-level images and hidden sinusoidal 1-D wavelets are stored in cubical memories. First we develop a learning procedure based upon the least-squares algorithm, Therefore each 2-D training image is mapped into the associated 1-D waveform in the training phase. Second we show how the recall procedure minimizes errors among the orthogonal basis functions in the hidden layer. As a 2-D images ould be retrieved in the recall phase. Simulation results confirm the efficiency and the noise-free properties of N-Cubes.

  • PDF

A Study on Radar Waveform - Polyphase Sequence (레이더 파형 연구 - 다위상 시퀀스)

  • Yang, Jin-Mo;Kim, Whan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.673-682
    • /
    • 2010
  • This paper describes and analyzes a various generation methods of the mutually orthogonal polyphase sequences with low cross-correlation peak sidelobe and low autocorrelation peak sidelobe levels. The mutual orthogonality is the key requirement of multi-static or MIMO(Multi-Input Multi-Output) radar systems which provides the good target detection and tracking performance. The polyphase sequences, which are generated by SA(Simulated Annealing) and GA(Genetic Algorithm), have been analyzed with ACF(Autocorrelation Function) PSL(Peak Sidelobe Level) and CCF(Crosscorrelation Function) level at the matched filter output. Also, the ambiguity function has been introduced and simulated for comparing Doppler properties of each sequence. We have suggested the phase selection rule for applying multi-static or MIMO systems.

A Study on Range-Doppler Processing of Time Shifted LFM Signals based on Quasi Orthogonal Property (준 독립적 특성 기반의 시간이동 LFM 신호를 이용한 거리-도플러 처리에 대한 연구)

  • Suh, Kyoung-Whoan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.125-133
    • /
    • 2016
  • As one of solutions to pursue the efficient use of spectrum resource, we proposed the methodology for the co-channel multi-site radar operations with the synchronous GPS clock. The proposed algorithm, based on a quasi orthogonal property, find a candidate set of the time shifted linear frequency modulation(TSLFM) signals with the minimum acceptable level of the correlation among selected TSLFM signals. To check suggested algorithm, numerical analysis for several radars operating in the same channel with a sawtooth waveform has been performed by using range-Doppler processing for the given system parameters, and computational results are presented and examined in terms of range profile and doppler shift for a targets with velocity and distance. Simulated results have a good agreement with assumed target distance and its velocity, within the error of resolution.

Comparison Analysis of Time and Frequency Resource of Candidate Waveforms for 5G Mobile Communications (5세대 이동통신을 위한 후보 변조기술들의 시간과 주파수 자원 비교 분석)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.987-995
    • /
    • 2016
  • One of evaluation indicators of candidate waveforms for 5G mobile communication is spectral efficiency improvement by OOB(Out of Band) power reduction technique. In this paper, time-frequency resource allocation characteristic of UFMC(Universal Filtered Multi-Carrier), FBMC(Filter Bank Multi-Carrier), and W-OFDM(Weighted Orthogonal Frequency Division Multiplexing) system is evaluated and analyzed. As simulation results, spectral efficiency characteristic of these systems have been improved according to time resource allocation. In this paper, we can confirm that each system has similar time-frequency efficiency characteristic when the number of transmission bit is same and four symbols are transmitted with the linear system condition. Also, we can conclude that FBMC system has the lowest time-frequency resource efficiency under the nonlinear condition.

Simplified approach for symbol error rate analysis of SC-FDMA scheme over Rayleigh fading channel

  • Trivedi, Vinay Kumar;Sinha, Madhusudan Kumar;Kumar, Preetam
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • In this paper, we present a comprehensive analytical study of the symbol error rate (SER) of single-carrier frequency-division multiple access (SC-FDMA) with zero-forcing frequency domain equalization (ZF-FDE) over a Rayleigh fading channel. SC-FDMA is considered as a potential waveform candidate for fifth-generation (5G) radio access networks (RANs). First, the $N_C$ fold convolution of the noise distribution of an orthogonal frequency-division multiplexing (OFDM) system is computed for each value of the signal-to-noise ratio (SNR) in order to determine the noise distribution of the SC-FDMA system. $N_C$ is the number of subcarriers assigned to a user or the size of the discrete Fourier transform (DFT) precoding. Here, we present a simple alternative method of calculating the SER by simplifying the $N_C$ fold convolution using time and amplitude scaling properties. The effects of the $N_C$ fold convolution and SNR over the computation of the SER of the SC-FDMA system has been separated out. As a result, the proposed approach only requires the computation of the $N_C$ fold convolution once, and it is used for different values of SNR to calculate the SER of SC-FDMA systems.

Tactical Data Link Message Packing Scheme for Imagery Air Operations (이미지 항공작전을 위한 전술데이터링크 메시지 패킹 기법)

  • Kim, Young-Goo;Lim, Jae-Sung;Noh, Houng-Jun;Lee, Kyu-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.278-287
    • /
    • 2012
  • In this paper, we propose an allocation scheme for variable message packings to increase efficiency of military operation using Link-16 which is well-known for tactical data link by delivering imagery information rapidly. We propose a variable message packing scheme using COC waveform to support variable data rate under some coverage limitation. Variety of message packing makes Link-16 vary transmission rate appropriately for tactical environment. We also propose a allocation scheme to assign message packing to time slot properly. Finally we verify the performance and superiority of proposed ideas by simulations.

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent;Effrina Yanti Hamid;Al Kautsar Permana
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.392-403
    • /
    • 2024
  • Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.