• Title/Summary/Keyword: original concrete strength

Search Result 113, Processing Time 0.03 seconds

Influence of the Quality of Recycled Aggregates on Microstructures and Strength Development of Concrete

  • Moon Dae-Joong;Moon Han-Young;Kim Yang-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.875-881
    • /
    • 2004
  • The quality of recycled aggregate is affected by original concrete strength and the manufacturing process of recycled aggregates. In this study, the porosity of old and new mortar, and the compressive strength of concrete were investigated to examine the influence of recycled aggregate on the concrete. Six kinds of recycled coarse aggregates were produced from concrete blocks of differing strength levels (A:60. 1MPa, B:41.7MPa, C:25.5MPa). Original concrete strength and the bond mortar of recycled aggregate influences the pore structures of both old and new mortar. The pore size distribution of old mortar was found to be greatly affected by age, and the reduction of the porosity of bond mortar on low strength recycled aggregate increased at a greater rate than that of bond mortar on high strength recycled aggregate. The pore size distribution of new mortar in recycled aggregate concrete changed in comparison with that of new mortar in virgin aggregate concrete. The total porosity of new mortar using B level recycled aggregates was smaller than that of new mortar with A, and C level recycled aggregates. Moreover, the compressive strength of recycled aggregate concrete was found to have been affected by original concrete strength. The compressive strength of concrete only changed slightly in the porosity of new mortar over $15\%$, but increased rapidly in the porosity of new mortar fewer than $15\%$.

Seismic shear strengthening of R/C beams and columns with expanded steel meshes

  • Morshed, Reza;Kazemi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.333-350
    • /
    • 2005
  • This paper presents results of an experimental study to evaluate a new retrofit technique for strengthening shear deficient short concrete beams and columns. In this technique a mortar jacket reinforced with expanded steel meshes is used for retrofitting. Twelve short reinforced concrete specimens, including eight retrofitted ones, were tested. Six specimens were tested under a constant compressive axial force of 15% of column axial load capacity based on original concrete gross section, $A_g$, and the concrete compressive strength, ${f_c}^{\prime}$. Main variables were the spacing of ties in original specimens and the volume fraction of expanded metal in jackets. Original specimens failed before reaching their nominal calculated flexural strength, $M_n$, and had very poor ductility. Strengthened specimens reached their nominal flexural strength and had a ductility capacity factor of up to 8 for the beams and up to 5.5 for the columns. Based on the test results, it can be concluded that expanded steel meshes can be used effectively to strengthen shear deficient concrete members.

Shear Strength Prediction by Modified Plasticity Theory for High-Strength Concrete Deep Beams

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.494-497
    • /
    • 2004
  • This paper presents the analysis results predicted by the upper bound approach in the limit analysis of concrete incorporating the original plastic and crack sliding solutions for short high-strength concrete beams that varied the compressive strength of concrete, and the shear span-to-depth and vertical shear reinforcement ratios. The significance of the distance away from the support to define the location where the yield line starts and the properties of cracked concrete, particularly related to high-strength concrete, is identified.

  • PDF

An Experimental Study on the Mechanical Properties Model of High Strength Concrete at High Temperature (고온시 고강도 콘크리트의 역학적 특성 모델 설정에 관한 실험적 연구)

  • Kim Heung-Yaul;Seo Chee-Ho;Jeon Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.5-8
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on mechanical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200$^{circ}C$, the high strength concrete show degradation at 100$^{circ}C$ and restoration at 200$^{circ}C$. The high strength concrete show elastic deformation at 20 - 200$^{circ}C$. Second, between 300 to 400$^{circ}C$, the mechanical properties of the high strength concrete which are exposed to fire show $75\~95\%$ as compared to the original properties because the thermally expanded ingredients of concrete, aggregates and cement paste, etc. Finally, beyond 600$^{circ}C$, the high strength concrete shows $75\~80\%$ reduction in thermal properties as compared to the normal concrete in the range of 600 to 800$^{circ}C$ and it shows $10\~30\%$ as compared to the original properties.

  • PDF

The Spalling Properties of High-Performance Concrete with the Kinds of Aggregates and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능콘리트의 폭열 성상)

  • 이병렬;황인성;윤기원;양성환;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.76-79
    • /
    • 1999
  • The purpose of this study is to investigate the spalling properties of high-performance concrete with the kinds of aggregates and polypropylene(below PP) fiber contents. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimens after fire test regardless of the kinds of aggregates. Concrete contained more than 0.05% of PP fiber with the kinds of aggregates does not take place the spalling. Concrete using basalt has better performance in spalling resistance that concrete using granite and limestone. It is found that residual compressive strength has 50~60% of their original strength. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF

Strength and Microstructure of Reactive Powder Concrete Using Ternary Pozzolanic Materials

  • So, Hyoung-Seok;Janchivdorj, Khulgadai;Yi, Je-Bang;Jang, Hong-Seok;So, Seung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2013
  • To consider the practicality and economic feasibility of developing reactive powder concrete (RPC), the strength and microstructure properties of RPC using ternary pozzolanic materials (silica fume, blast furnace slag, fly ash) were investigated in this study. Through the investigation, it was found that the compressive strength of RPC using ternary pozzolanic materials was increased significantly compared to that of the original RPC containing silica fume only. A considerable improvement in the flexural strength of RPC using ternary pozzolanic materials was found, and then the utilization of a structural member subjected to bending was expected. The X-ray diffractometer (XRD) analysis and Scanning Electronic Microscope (SEM) revealed that the microstructure of RPC was denser using the ternary pozzolanic materials than the original RPC.

Shear strength model for reinforced concrete corbels based on panel response

  • Massone, Leonardo M.;Alvarez, Julio E.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.723-740
    • /
    • 2016
  • Reinforced concrete corbels are generally used to transfer loads within a structural system, such as buildings, bridges, and facilities in general. They commonly present low aspect ratio, requiring an accurate model for shear strength prediction in order to promote flexural behavior. The model described here, originally developed for walls, was adapted for corbels. The model is based on a reinforced concrete panel, described by constitutive laws for concrete and steel and applied in a fixed direction. Equilibrium in the orthogonal direction to the shearing force allows for the estimation of the shear stress versus strain response. The original model yielded conservative results with important scatter, thus various modifications were implemented in order to improve strength predictions: 1) recalibration of the strut (crack) direction, capturing the absence of transverse reinforcement and axial load in most corbels, 2) inclusion of main (boundary) reinforcement in the equilibrium equation, capturing its participation in the mechanism, and 3) decrease in aspect ratio by considering the width of the loading plate in the formulation. To analyze the behavior of the theoretical model, a database of 109 specimens available in the literature was collected. The model yielded an average model-to-test shear strength ratio of 0.98 and a coefficient of variation of 0.16, showing also that most test variables are well captured with the model, and providing better results than the original model. The model strength prediction is compared with other models in the literature, resulting in one of the most accurate estimates.

Strengthening of concrete damaged by mechanical loading and elevated temperature

  • Ahmad, Hammad;Hameed, Rashid;Riaz, Muhammad Rizwan;Gillani, Asad Ali
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.645-658
    • /
    • 2018
  • Despite being one of the most abundantly used construction materials because of its exceptional properties, concrete is susceptible to deterioration and damage due to various factors particularly corrosion, improper loading, poor workmanship and design discrepancies, and as a result concrete structures require retrofitting and strengthening. In recent times, Fiber Reinforced Polymer (FRP) composites have substituted the conventional techniques of retrofitting and strengthening of damaged concrete. Most of the research studies related to concrete strengthening using FRP have been performed on undamaged test specimens. This contribution presents the results of an experimental study in which concrete specimens were damaged by mechanical loading and elevated temperature in laboratory prior to application of Carbon Fiber Reinforced Polymer (CFRP) sheets for strengthening. The test specimens prepared using concrete of target compressive strength of 28 MPa at 28 days were subjected to compressive and splitting tensile testing up to failure and the intact pieces of the failed specimens were collected for the purpose of repair. In order to induce damage as a result of elevated temperature, the concrete cylinders were subjected to $400^{\circ}C$ and $800^{\circ}C$ temperature for two hours duration. Concrete cylinders damaged under compressive and split tensile loads were re-cast using concrete and rich cement-sand mortar, respectively and then strengthened using CFRP wrap. Concrete cylinders damaged due to elevated temperature were also strengthened using CFRP wrap. Re-cast and strengthened concrete cylinders were tested in compression and splitting tension. The obtained results revealed that re-casting of specimens damaged by mechanical loadings using concrete & mortar, and then strengthened by single layer CFRP wrap exhibited strength even higher than their original values. In case of specimens damaged by elevated temperature, the results indicated that concrete strength is significantly dropped and strengthening using CFRP wrap made it possible to not only recover the lost strength but also resulted in concrete strength greater than the original value.

A Study on the Spalling Properties of High-Performance Concrete with the Kinds of Aggregate and Polypropylene Fiber Contents (골재종류 및 폴리프로필렌 섬유 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성에 관한 연구)

  • 한천구;양성환;이병렬;황인성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.69-77
    • /
    • 1999
  • A spalling is defined as the damages of concrete exposed to high temperature during the fire by causing cracks and localized bursting of small pieces of concrete. It is reported that spalling is caused by the vapor pressure and polypropylene(PP) fiber has an important role in protecting from spalling. This paper is a study on the properties and spalling resistance of high-performance concrete with the kinds of aggregate and the contents of PP fiber. According to the experimental results, concrete contained no PP fiber take place in the form of the surface spalling and the failure of specimenns after fire test regardless of the kinds of aggregate. Concrete contained more than 0.05% of PP fiber with the aggregate of basalt does not take place the spalling, while the concrete using granite and limestone does the surface spalling. It is found that residual compressive strength after exposed at high temperature has 50~60% of its original strength. Although specimens after exposed at high temperature is cured at water for 28days, they do not recover their original strength.

Spalling Properties of High-Performance Concrete with the Kinds of Admixture and Polypropylene Fiber Contents (혼화재 종류 및 폴리프로필렌 섬유의 혼입률 변화에 따른 고성능 콘크리트의 폭열 특성)

  • Han, Cheon-Goo;Yang, Seong-Hwan;Lee, Byung-Yul;Hwang, Yin-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.85-92
    • /
    • 2000
  • Recently. there has been steadily applied in high-performance concrete using powder type admixture in construction field. It has been reported that high-performance concrete is likely to cause the spalling by fire more seriously due to the dense microstructure. In this paper, spalling properties of high-performance concrete with the kinds of admixture and polypropylene(PP) fiber contents are presented. According to the experimental results concrete contained no PP fiber take place in the form of the surface spalling, regardless of admixture. Concrete contained more than 0.05% of PP fiber and admixture do not take place the spalling, however the concrete using silica fume do spalling. Concrete using blast furnace slag have good performance in spalling resistance. It is found that residual compressive strength has 60~70% of its original strength when spalling do not occur. Although specimens after exposed at high temperature are cured at water for 28days, they do not recover their original strength.

  • PDF