• Title/Summary/Keyword: orifice design

Search Result 237, Processing Time 0.021 seconds

Effect of the Orifice Area Ratio on the Exit Flow of a Multi-Perforated Tube (다공튜브 오리피스 면적비 변화가 출구유동에 미치는 영향)

  • Lee, Sang-Kyoo;Lee, Jee-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.317-323
    • /
    • 2013
  • A multi-perforated tube indicates the existence of multiple holes of various shapes on the surface of a long cylinder-type or rectangular tube, and a hole installed on the surface is called an orifice, as it is relatively small in size, compared with the surface area of the tube. In this study, the flow characteristics of a circular multi-perforated tube with many orifices on the surface were investigated experimentally and numerically. The volume flowrate issuing from each orifice, discharge angle, effective flow area ratio, and the flow fields around the orifices were measured and visualized, with the variation of the orifice area ratio, at the same blockage ratio. The volume flowrate distributions along the flow direction of the multi-perforated tube tends to be more uniform, as larger orifices were positioned at the inlet side of the multi-perforated tube, compared with no orifice area change along the flow direction.

Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics (2 상 유동 및 물질전달 특성에 미치는 오리피스 노즐형상과 소요동력의 영향)

  • Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.237-243
    • /
    • 2016
  • It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

Design of Throttle Orifices for an Aircraft Door Damper (항공기의 도어 댐퍼용 교축 오리피스의 설계)

  • Kwon, Y.C.;Kim, C.H.;Hong, Y.S.;Kim, S.B.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.23-28
    • /
    • 2012
  • In this study the flow rate-to-pressure difference characteristics of short-tube type damping orifices for an aircraft door damper were investigated by CFD analyses and experiments. As the design parameters of the damping orifice its diameter, inlet and outlet angle, tube length and the viscosity of the working fluid were taken into consideration. The results showed that the discharge coefficient of the orifices are dependant on the inlet and outlet angle and the oil viscosity, while their length plays an little significant role. Although the short-tube type damping orifice was employed to induce a turbulent flow, their discharge coefficient decreases rapidly as the oil viscosity gets higher than 50mm2/s. Therefore, in order to determine the orifice size, satisfying the working temperature range of the door damper, the oil viscosity as well as the friction force on the damper piston should be kept within proper values. For the verification of the CFD analysis results the actual performance of a door damper was measured and compared with them.

Characteristics of Acoustic Damping Induced by Helmholtz Resonators with Various Geometric Factors in a Model Chamber (모형연소실내에서 헬름홀츠 공명기의 기하학적 형상 인자에 따른 음향 감쇠 특성)

  • Choi, Hyo-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.254-257
    • /
    • 2010
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. Acoustic damping is quantified by the amplitude of the fluid velocity in mass-spring-damper system. The length of an orifice, the volume of a cavity, and the diameters of an orifice and a cavity in the resonator are selected as design parameters for tuning of the resonator. It is found that acoustic damping capacity is increased by shorter orifice and longer cavity in the resonator. As the ratio of the orifice diameter to the cavity diameter increases in the resonator, the damping capacity decreases.

  • PDF

An Analysis of the Effect of a Variant Drain Orifice Damping on an Electrohydraulic Servovalve Flapper-Nozzle Stage (전기유압 서보밸브 플랩퍼-노즐에 대한 변동 배유 오리피스의 영향 해석 1)

  • Lee, Jae-Cheon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.50-59
    • /
    • 1999
  • The effect of a variant drain orifice damping on the characteristics of a servovalve flapper-nozzle stage is analyzed. Steady-state characteristics of flapper-nozzle stage and the linearized dynamics of flapper-nozzle assembly with a spool valve show that the variant drain orifice damping could improve such null performance characteristics as null pressure sensitivity and linearity of gain function. Generalized design criterion and a sufficient condition for servovalve stability are also established.

  • PDF

Development of precision vibration isolation table and study of dynamic characteristics with experiment (정밀 제진대 개발 및 동특성에 관한 실험적 연구)

  • 김인수;김종연;한문성;김영중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • Recently, the high precision technology can not be developed continuously if we don't have anti vibration technology. Vibration isolation technology using an air spring and laminated robber bearing is widely used because it has excellent vibration isolation characteristics. We developed high precision vibration table with two good element(air spring and LRB) for semiconductor factory. Air Spring is used for isolating the vertical vibration and LRB is used for isolating the horizontal Vibration. As a result, It has D-Class degree in BBR-Criteria. In this paper, we talk about orifice characteristics in the self-damped air spring and design flow of the laminated robber bearing. The orifice characteristics is delicate shade of length and diameter. When we do experimentation to find orifice characteristics, length is fixed and diameter is changed. The orifice diameter is the wider and the air spring stiffness is the softer.

  • PDF

Manufacture and Application of Diamond Orifices in Abrasive Suspension Jet for Micro Machining (습식 워터 젯 정밀 절삭 가공용 다이아몬드 오리피스 제조 및 응용)

  • Kim, Youn-Chul;Park, Hee-Dong;Jho, Jae-Han;Kang, Suk-Joong L
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.509-513
    • /
    • 2008
  • High-pressure abrasive entrained jet have rapidly become important machining technology over the last two decades. However, suspension jet by high-pressure has been recently developed for packaging sawing. Ideally, diamond materials should be used for components in abrasive water-jet systems that are subject to high erosive conditions. Using the diamond orifices improve maintenance and extend wear part life. This paper gives insights to using an abrasive suspension jet with diamond orifice. The influences of orifice material and orifice design are evaluated.

A Study on the Characteristics of the Hydrostatic Bearing by the Variation of the Orifice in Hydraulic Piston Motor (유압 피스톤 모터의 오리피스 변화에 따른 정압베어링의 특성에 관한 연구)

  • Kim, K.M.;Lee, Y.B.;Kim, T.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.7-12
    • /
    • 2010
  • In the case of hydraulic piston motor, hydrostatic bearing is designed to be adapted the hydrostatic bearing for the relative lubrication in the structural design. It's available to make it highly efficient and that's why it's widely used. The thing which largely influence the high pressure, the high efficiency, and the life is the hydrostatic bearing between a shoe and a swash plate. In this study, with the most general "hydrostatic bearing shoe" that has one recess as the subject of this research, I designed and made the 4 kind of piston shoe that have different orifice diameter each other, and studied the features of the hydrostatic bearing by observing the change of the leakage flow rate, the torque and the volumetric efficiency through experiments on the changes of the pressure & the speed of the revolution. As a result, the bigger diameter of the orifice, the less torque. And with an increase of the orifice diameter under the high pressure, the leakage flow rate decreased remarkably. Also it was observed the leakage flow rate increased linearly according to the increase of the supply pressure.

  • PDF

Development of cryogenic free-piston reciprocating expander utilizing phase controller

  • Cha, Jeongmin;Park, Jiho;Kim, Kyungjoong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • A free-piston reciprocating expander is a device which operates without any mechanical linkage to a stationary part. Since the motion of the floating piston is only controlled by the pressure difference at two ends of the piston, this kind of expander may indispensably require a sophisticated active control system equipped with multiple valves and reservoirs. In this paper, we have suggested a novel design that can further reduce complexity of the previously developed cryogenic free-piston expander configuration. It is a simple replacement of both multiple valves and reservoirs by a combination of an orifice valve and a reservoir. The functional characteristic of the integrated orifice-reservoir configuration is similar to that of a phase controller applied in a pulse tube refrigerator so that we designate the one as a phase controller. Depending on the orifice valve size in the phase controller, the different PV work which affects the expander performance is generated. The numerical model of this unique free-piston reciprocating expander utilizing a phase controller is established to understand and analyze quantitatively the performance variation of the expander under different valve timing and orifice valve size. The room temperature experiments are carried out to examine the performance of this newly developed cryogenic expander.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.