• 제목/요약/키워드: orifice design

검색결과 237건 처리시간 0.028초

가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증 (Design and Verification of a Injector using Gas Methane and LOx as Propellants)

  • 장지훈;민지홍;이양석;고영성;김선진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.877-880
    • /
    • 2011
  • 기체메탄/액체산소를 추진제로 사용하는 동축 스월/전단형 인젝터를 설계 및 제작하였다. 각 추진제의 오리피스 개수와 유입오리피스 후단의 형상 등은 상용 해석프로그램인 Fluent를 이용하여 유동해석을 수행한 결과를 바탕으로 결정하였다. 설계/제작된 인젝터는 수류시험을 통해 차압에 따른 설계유량을 측정하였고, 패터네이터를 이용하여 유량분포의 균일성을 확인하였다. 측정결과 설계 유량의 약10% 내외의 차이를 보였으며, 산화제 인젝터의 분무각은 $66^{\circ}$로 측정되었다.

  • PDF

가스메탄/액체산소를 추진제로 하는 인젝터 설계 및 설계 검증 (Design and Verification of a Injector using Gas Methane and LOx as Propellants)

  • 장지훈;민지홍;이양석;고영성;김선진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.658-661
    • /
    • 2011
  • 기체메탄/액체산소를 추진제로 사용하는 동축 스월/전단형 인젝터를 설계 및 제작하였다. 각 추진제의 오리피스 개수와 유입오리피스 후단의 형상 등은 상용 해석프로그램인 Fluent를 이용하여 유동해석을 수행한 결과를 바탕으로 결정하였다. 설계/제작된 인젝터는 수류시험을 통해 차압에 따른 설계유량을 측정하였고, 패터네이터를 이용하여 유량분포의 균일성을 확인하였다. 측정결과 설계 유량의 약 10% 내외의 차이를 보였으며, 산화제 인젝터의 분무각은 $66^{\circ}$로 측정되었다.

  • PDF

LPG기관의 과류밸브가 가속성능에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effects of EFV of LPG Engine on Automobiles Acceration Performance)

  • 장태익;김창헌;김철수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1072-1081
    • /
    • 2004
  • This paper is to investigate on the effects of the hole size of spring type EFV(excessive flow valve) for automobiles The analytical and experimental methods were employed to measure the discharge coefficient. choked flowrate and Pressure wave in a bombe, line and vaporizor The size of EFV was determined to meet the legally permitted limits with the capacity of engine displacement up to 2000cc, according to the obtained discharge coefficient. The Purpose of this paper is 1) to find causes of bad acceration performance in LPG engines 2) to find optimal design determination of spring coefficient and orifice hole size of excessive flow valve in LPG engine 3) to find pressure wave of bombe, line and vaporizer through expeimental verification. Experimental results indicated that increase of orifice size 0.5mm to 1mm be caused to increase discharge coefficient, and choked flow rate and decrease operation range of difference pressure wave.

차압에 따른 PCV 밸브 유동 특성에 관한 연구 (A Study on Flow Characteristics in a PCV valve according to Various Differential Pressures)

  • 이종훈;이연원;김재환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.230-231
    • /
    • 2005
  • As environmental problems are important, automotive industries are developing various techniques to prevent air pollution. One of these is Positive Crankcase Ventilation (PCV) system. It removes blowby gas which includes about 30% hydrocarbon of total generated quantity. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates differently according to various operating conditions of an automotive engine. As this valve is very important, designers are feeling to design it because of both small size and high velocity. For this reason, we numerically investigated to understand both spool dynamic motion and internal fluid flow characteristics. As the results, spool dynamic characteristics, i.e. displacement, velocity, acting force, increase in direct proportion to the magnitude of differential pressure and indicate periodic oscillating motions. And, the velocity at the orifice region decreases according to the increase of differential pressure because of energy loss which is caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in the front of spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement. We expect that PCV valve designers can easily understand fluid flow inside a PCV valve with our visual information for their help.

  • PDF

자동차 헤드램프 세척용 재순환 챔버 노즐의 내부유동이 분무장에 미치는 영향 (Effect of Internal Flow inside Recirculation Chamber Nozzle for Automative Head Lamp on Cleaning Spray)

  • 신정환;이인철;강영수;김종현;구자삼;구자예
    • 한국분무공학회지
    • /
    • 제16권2호
    • /
    • pp.90-96
    • /
    • 2011
  • Atomized liquid jets from the washing nozzle which configured with recirculation chamber for cleaning hot-zone area are accelerated and impinged on the head lamp surface. Cleaning efficiency of head lamp can be increased with injecting washing fluids into the hot-zone area. Experimental and numerical studies with various design parameters were executed to reveal the relations between internal geometry and internal flow in the washing nozzle. Spray structures were fitted with each of the head lamp surfaces and spray nozzles were optimized to the spray pattern. The recirculation chamber induces a recirculation flow and can be decreased the pressures perturbation inside the chamber. Orifice determines the mass flow rate. When the diameter of orifice is excessively large, it showed an unstable spray pattern. As a nozzle exit angle increases, density distributions are separated with two section. Also, as a protrusion length of nozzle exit increases, spray patterns are spread into a large area and density distributions showed unstable trend.

Analysis of Channel Flow Low During Fuelling Operation of Selected Fuel Channels at Wolsong NPP

  • I. Namgung;Lee, S.K.
    • Nuclear Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.502-516
    • /
    • 2002
  • Wolsong NPP are CANDU6 type reactors and there are 4 CANDU6 type reactors in commercial operation. CANDU type reactors require on-power refuelling by two remote controlled F/Ms (Fuelling Machines). Most of channels, fuel bundles are float by channel coolant flow and move toward downstream, however in about 30% of channels the coolant flow are not sufficient enough to carry fuel bundles to downstream. For those channels a special device, FARE (Flow Assist Ram Extension) device, is used to create additional force to push fuel bundles. It has been showing that during fuelling operation of some channels the channel coolant flow rate is reduced below specified limit (80% of normal), and consequently trip alarm signal turns on. This phenomenon occurs on selected channels that are instrumented for the channel flow and required to use the FARE device for refuelling. Hence it is believed that the FARE device causes the problem. It is also suspected that other channels that do not use the FARE device for refuelling might also go into channel flow low state. The analysis revealed that the channel How low occurs as the FARE device is introduced into the core and disappears as the FARE device is removed from the core. This paper presented the FARE device behavior, detailed fuelling operation sequence with the FARE device and effect on channel flow low phenomena. The FARE device components design changes are also suggested, such as increasing the number or now holes in the tube and flow slots in the ring orifice.

An Overall Investigation of Break Simulators for LOCA Scenarios in Integral Effect Tests

  • Kim, Yeon-Sik;Park, Hyun-Sik
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.73-88
    • /
    • 2014
  • Various studies on the critical flow models for sub-cooled and/or saturated water were reviewed, especially on Fauske, Moody, and Henry for basic theoretical models; Zaloudek for insight into physical phenomena for a critical flow in an orifice type flow path; Sozzi & Sutherland for a critical flow test of saturated and sub-cooled water at high pressure for orifice and nozzles; and a Marviken test on a full-scale critical flow test. In addition, critical flow tests of sub-cooled water for the break simulators in integral effect test (IET) facilities were also investigated, and a hybrid concept using Moody's and Fauske's models was considered by the authors. In the comparison of the models for the selected test data, discussions of the effect of the diameters, predictions of the critical flow models, and design aspects of break simulator for SBLOCA scenarios in the IET facilities were presented. In the effect of diameter on the critical flow rate with respect to all dimensional scales, it was concluded that the effect of diameter was found irrespective of diameter sizes. In addition, the diameter effect on slip ratio affecting the critical flow rate was suggested. From a comparison of the critical flow models and selected test data, the Henry-Fauske model of the MARS-KS code was found to be the best model predicting the critical flow rate for the selected test data under study.

가압제어용 둥근 유입형 오리피스 특성 (Rounded Entry Orifice Characteristics for Pressurization Control)

  • 정용갑;권오성;장제선;신동순;한상엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.401-404
    • /
    • 2008
  • Pressurization system in a liquid-propellant launcher supplies the controlled gas into the ullage volume of propellant tanks to feed propellants to combustion chamber by pressurizing propellants stored in propellant tanks. The ullage part of propellant tank should be constantly pressurized to supply the propellants stored in propellant tanks to turbo-pump or combustion chamber by pressurant pressurization system. Pressurant used to pressurize propellants is generally stored in a series of tanks at cryogenic temperature and high preassure inside an oxidizer tank. The reason is to store the quantity of pressurant as much as possible and to make pressurant tanks as small as (i.e. as light as) possible. However for test convenience pressurant tank is located at STP (standard temperature and pressure) environment in this study. Orifices are widely adapted to several pressurization systems in liquid rocket propulsion systems. Discharge coefficients of orifices are essentially needed for the optimized design of pressurization system in liquid rocket propulsion system. For this study gaseous nitrogen was served as pressurant and rounded entry orifices were employed. The forty-two (42) rounded entry orifices (the radii of curvatures are 0.5 and 1.0) have been tested experimentally in the supersonic flow region. The discharge coefficients of rounded entry orifices with inside diameters ranging from about 1.4 to 5.0mm was measured with 0.95 ${\sim}$ 0.99.

  • PDF

저속에서 피스톤 슈 내부 보조 링의 윤활 효과 분석 (Investigation of the Tribological Effects of the Auxiliary Inner Ring for Piston Shoes at Low Speeds)

  • 이성렬;김종혁;홍예선;김병곤;문진삼;문준혁
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.21-26
    • /
    • 2015
  • In order to design a swash plate type pump for electro-hydrostatic actuators the performance of the hydrostatic piston shoe bearings in the low speed range needs to be examined, since the pump operates frequently at low speeds, compensating for position control errors as a control element. As a common practice, piston shoes are equipped with inner rings as an auxiliary element to enhance their tribological performance. In this paper, the effects of the inner rings of the piston shoes on the frictional loss and leakage flow rate were investigated, where three piston shoe models, with different inner ring shapes and different inlet orifice sizes, were integrated. The test results showed that a large inner ring and small inlet orifice were advantageous for reducing both the frictional loss and leakage flow rate; this could also be confirmed by computational analyses.

수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화 (Flow Visualization of Plastic type PCV Valve with Horizontal Force)

  • 최윤환;이연원
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.