• Title/Summary/Keyword: orientation alignment

Search Result 169, Processing Time 0.032 seconds

Effects of UV Irradation on the Alignment of Liquid Crystal (러빙배향된 액정셀에 대한 자외선 조사효과)

  • 김영식;김재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.324-327
    • /
    • 2001
  • Liquid crystal alignments on a rubbed polyimide layer were investigated by using optical transmission method. Using this technique, we also studied the pretilt angle of the polymer molecules near the surface of a side-chain polymer layer as a function of the rubbing strength. In particular, we obtained the optical characteristics of liquid crystal orientations and pretilt angles for LC cell photo-aligned by UV as well after rubbing alignment. High pretilt angle of 3.84 degree was obtained on the weekly rubbed polymide layer during UV irradation time of 60min.

  • PDF

Anisotropic TiSrYZrO Thin Films Induced by One-step Brush Coating for Liquid Crystal Molecular Orientation (액정분자 배향용 원스텝 브러시 코팅으로 유도된 이방성 TiSrYZrO 박막)

  • Byeong-Yun Oh
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.146-154
    • /
    • 2024
  • In this paper, we present a convenient liquid crystal (LC) molecular alignment method using brush hairs as an alternative to the rubbing process in the LC display industry. Titanium strontium yttrium zirconium oxide (TiSrYZrO) solution was prepared using a sol-gel process, and the TiSrYZrO alignment film production and LC molecular alignment were integrated through a one-step brush coating process. As the curing temperature increased, the LC molecule alignment of the LC cell improved, and the formation of a physical surface anisotropic structure due to the shear stress caused by the movement of the brush hairs on the coating surface led to uniform alignment of the LC molecules. Uniform and homogeneous LC molecular alignment was confirmed through polarizing optical microscopy and pretilt angle measurement. Through thermal oxidation using X-ray photoelectron spectroscopy, the TiSrYZrO thin film well formed of metal oxide was confirmed and verified to have excellent optical transparency. From these results, it is expected that a convenient LC molecular alignment method using brush hairs as an alternative to the rubbing process will be a viable next-generation technology.

A Robotic Vision System for Turbine Blade Cooling Hole Detection

  • Wang, Jianjun;Tang, Qing;Gan, Zhongxue
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.237-240
    • /
    • 2003
  • Gas turbines are extensively used in flight propulsion, electrical power generation, and other industrial applications. During its life span, a turbine blade is taken out periodically for repair and maintenance. This includes re-coating the blade surface and re-drilling the cooling holes/channels. A successful laser re-drilling requires the measurement of a hole within the accuracy of ${\pm}0.15mm$ in position and ${\pm}3^{\circ}$ in orientation. Detection of gas turbine blade/vane cooling hole position and orientation thus becomes a very important step for the vane/blade repair process. The industry is in urgent need of an automated system to fulfill the above task. This paper proposes approaches and algorithms to detect the cooling hole position and orientation by using a vision system mounted on a robot arm. The channel orientation is determined based on the alignment of the vision system with the channel axis. The opening position of the channel is the intersection between the channel axis and the surface around the channel opening. Experimental results have indicated that the concept of cooling hole identification is feasible. It has been shown that the reproducible detection of cooling channel position is with +/- 0.15mm accuracy and cooling channel orientation is with +/$-\;3^{\circ}$ with the current test conditions. Average processing time to search and identify channel position and orientation is less than 1 minute.

  • PDF

LC Orientation Characteristics of NLC on Polyimide Surface According to Ion-beam Irradiation Angles (이온빔 조사각도에 따른 네마틱 액정의 액정 배향 특성)

  • Lee, Kang-Min;Oh, Byeong-Yun;Park, Hong-Gyu;Lim, Ji-Hun;Lee, Won-Kyu;Na, Hyun-Jae;Kim, Byoung-Yong;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.329-329
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, noncontact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the poly imide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure poly imide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}4 for all of irradiation angles. In addition, it can be achieved the good ED properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

The Effect of Visual Cue Deprivation for the Head Alignment on Unilateral Neglect Patient: Case Report (편측 무시 환자에서 시각 정보 차단이 머리 위치 정렬에 미치는 영향: 사례 연구)

  • Chang, Jong-Sung;Park, Jung-Mi;Lee, Mi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.337-342
    • /
    • 2013
  • PURPOSE: The Unilateral neglect is characterized by difficulty shifting attention to the side of space opposite the brain lesion and frequently reducing use of contralesional extremities. This study was to identify whether the visual deprivation was responsible for head position on unilateral neglect patient after stroke. METHODS: A patient with left middle cerebral artery infarction participated in the study. We assessed neglect using line bisection and star cancellation test. Patient was instructed to maintain correct alignment of trunk and head in a sit position. We evaluated degree of head lateral tilting and rotation. Then, patient was blocked visual input. Also, we evaluated head position in the same way. RESULTS: He scored 3 points in the line bisection test and 9 points star cancellation test. In postural evaluation, he had deviated posture such as lateral head tilting and rotation. After visual cue deprivation, patient showed different head position which was decreased degree of head tilting and rotation. CONCLUSION: For vertical body orientation, it was used multiple sensory references including the vestibular, somatosensory, and visual system. This finding suggested that abnormal posture of neglect patient could be related to the visual input. It has important clinical implications in terms of understanding the neglect.

Femtosecond laser induced photo-expansion of organic thin films

  • Chae, Sang-Min;Lee, Myeong-Su;Choe, Ji-Yeon;Lee, Hyeon-Hwi;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.120.2-120.2
    • /
    • 2015
  • We propose a novel direct writing technique with a femtosecond laser enabling selective modification of not only the morphology of conducting polymer thin films but also the orientation and alignment of the polymer crystal. Surface relief gratings resulting from photoexpansion on P3HT:PCBM and PEDOT:PSS thin films were fabricated by femtosecond laser direct writing. The photoexpansion was induced at laser fluence below the ablation threshold of the thin film. The morphology (size and shape) of photoexpansion could be quantitatively controlled by laser writing parameters such as focused beam size, writing speed, and laser fluence. GIWAX results showed that face-on P3HT crystals were largely increased in the photoexpansion in comparison with pristine region of the thin film. In addition, the face-on P3HTs in the photoexpansion were aligned with their orientation along the polarization of the laser. The micro-RAMAN spectra confirmed that neither chemical composition change nor the polymer chain breaking was observable after femtosecond laser irradiation. We believe that this laser direct writing technique opens a new door to the fabrication of more efficient OPVs via non-contact, toxic-free approach.

  • PDF

Investigation of Liquid Crystal Alignment on ion beam exposed polystyrene surface (이온빔을 조사한 폴리스타일렌 기판에서의 액정의 배향특성)

  • Hwang, Hyun Suk;Lee, Jong-Deok;Rho, Jungkyu;Han, Jeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.33-37
    • /
    • 2014
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure time. Transparent PS was replaced with conventional polyimide material. As a non-contact process, IB bombardment process induced LC orientation in the direction parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time.Using this analysis, the optimal IB bombardment condition was determined at IB exposure time of up to 15 s. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property.

How Do Liquid Crystal Molecules Align on Treated Surfaces?

  • Okada, Yoshinori;Shioda, Tatsutoshi;Chung, Doo-Han;Park, Byoung-Choo;Takezoe, Hideo
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.29-34
    • /
    • 2003
  • We have studied liquid crystal (LC) molecular alignment on rubbed and photoaligned surfaces. Particular attention was paid to the intermolecular liquid crystalline interaction. We will first show that uniform molecular orientation on a rubbed surface does not mean spatially uniform interaction between the surface and LC molecules. Rather LCs tend to align themselves through LC interaction. The existence of nonuniformity of rubbing was successfully visualized by double surface treatment. The importance of intermolecular LC interaction was also found in the orientation formation process in 5CB evaporated on rubbed and photoaligned surfaces. By simultaneously analyzing polarized UVNIS absorption and second-harmonic generation (SHG) using the maximum entropy method, we succeeded in obtaining the temporal variation of the orientational distribution functions in the film forming process. The distribution anisotropy and pretilt are found to be generated under the influence of intermolecular LC interaction.

Feasibility study on using crowdsourced smartphones to estimate buildings' natural frequencies during earthquakes

  • Ting-Yu Hsu;Yi-Wen Ke;Yo-Ming Hsieh;Chi-Ting Weng
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • After an earthquake, information regarding potential damage to buildings close to the epicenter is very important during the initial emergency response. This study proposes the use of crowdsourced measured acceleration response data collected from smartphones located within buildings to perform system identification of building structures during earthquake excitations, and the feasibility of the proposed approach is studied. The principal advantage of using crowdsourced smartphone data is the potential to determine the condition of millions of buildings without incurring hardware, installation, and long-term maintenance costs. This study's goal is to assess the feasibility of identifying the lowest fundamental natural frequencies of buildings without knowing the orientations and precise locations of the crowds' smartphones in advance. Both input-output and output-only identification methods are used to identify the lowest fundamental natural frequencies of numerical finite element models of a real building structure. The effects of time synchronization and the orientation alignment between nearby smartphones on the identification results are discussed, and the proposed approach's performance is verified using large-scale shake table tests of a scaled steel building. The presented results illustrate the potential of using crowdsourced smartphone data with the proposed approach to identify the lowest fundamental natural frequencies of building structures, information that should be valuable in making emergency response decisions.

The Alignment of Liquid Crystals on the Film Surfaces of Soluble Aromatic Polyimides Bearing t-Butylphenyl and Trimethylsilylphenyl Side Groups

  • Hahm, Suk-Gyu;Jin, Kyeong-Sik;Park, Sam-Dae;Ree, Moon-Hor;Kim, Hyung-Sun;Kwon, Soon-Ki;Kim, Yun-Hi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.976-986
    • /
    • 2009
  • With the study goal of firstly elucidating the anisotropic interactions between oriented polymer chain segments and liquid crystal (LC) molecules, and secondly of determining the contributions of the chemical components of the polymer segments to the film surface topography, LC alignment, pretilt, and anchoring energy, we synthesized three dianhydrides, 1,4-bis(4'-t-butylphenyl)pyromellitic dianhydride (BBPD), 1,4-bis(4'-trimethylsilylphenyl)pyromellitic dianhydride(BTPD), and 2,2'-bis(4"-tert-butylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (BBBPAn), and a series of their organosoluble polyirnides, BBPD-ODA, BBPD-MDA, BBPD-FDA, BTPD-FDA, and BBBPAn-FDA, which contain the diamines 4,4'-oxydianiline (ODA), 4,4'-methylenediamine (MDA), and 4,4'-(hexafluoroisopropylidene)dianiline (FDA). All the polyimides were determined to be positive birefringent polymers, regardless of the chemical components. Although all the rubbed polyimide films exhibited microgrooves which were created by rubbing process, the film surface topography varied depending on the polyimides. In all the rubbed films, the polymer chains were unidirectionally oriented along the rubbing direction. However, the degree of in-plane birefringence in the rubbed film varied depending on the polyimides. The rubbing-aligned polymer chains in the polyimide films effectively induced the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The azimuthal and polar anchoring energies of the LCs ranged from $0.45{\times}10^{-4}\;-\;1.37{\times}10^{-4}\;J/m^2$ and from $0.86{\times}10^{-5}\;-\;4.26{\times}10^{-5}\;J/m^2$, respectively, depending on the polyimides. The pretilt angles of the LCs were in the range $0.10-0.62^{\circ}$. In summary, the soluble aromatic polyimides reported here are promising LC alignment layer candidates for the production of advanced LC display devices.