• Title/Summary/Keyword: organoid

Search Result 44, Processing Time 0.019 seconds

Establishment of intestinal organoids from small intestine of growing cattle (12 months old)

  • Kang Won, Park;Hyeon, Yang;Min Gook, Lee;Sun A, Ock;Hayeon, Wi;Poongyeon, Lee;In-Sul, Hwang;Jae Gyu, Yoo;Choon-Keun, Park;Bo Ram, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1105-1116
    • /
    • 2022
  • Recently, we reported the robust in vitro three-dimensional (3D) expansion of intestinal organoids derived from adult bovine (> 24 months) samples. The present study aimed to establish an in vitro 3D system for the cultivation of intestinal organoids derived from growing cattle (12 months old) for practical use as a potential alternative to in vivo systems for various purposes. However, very few studies on the functional characterization and 3D expansion of adult stem cells from livestock species compared to those from other species are available. In this study, intestinal crypts, including intestinal stem cells, from the small intestines (ileum and jejunum) of growing cattle were isolated and long-term 3D cultures were successfully established using a scaffold-based method. Furthermore, we generated an apical-out intestinal organoid derived from growing cattle. Interestingly, intestinal organoids derived from the ileum, but not the jejunum, could be expanded without losing the ability to recapitulate crypts, and these organoids specifically expressed several specific markers of intestinal stem cells and the intestinal epithelium. Furthermore, these organoids exhibited key functionality with regard to high permeability for compounds up to 4 kDa in size (e.g., fluorescein isothiocyanate [FITC]-dextran), indicating that apical-out intestinal organoids are better than other models. Collectively, these results indicate the establishment of growing cattle-derived intestinal organoids and subsequent generation of apical-out intestinal organoids. These organoids may be valuable tools and potential alternatives to in vivo systems for examining host-pathogen interactions involving epithelial cells, such as enteric virus infection and nutrient absorption, and may be used for various purposes.

The Chronic and Acute Toxicity of Traditional Medicines Containing Terminalia chebula

  • ARONGQIQIGE ARONGQIQIGE;Gerelmaa Enebish;Wang Song;Wei Cheng Xi;Anuujin Gantumur;Oyunbaatar Altanbayar;Hirofumi Shimomura;Battogtokh Chimeddorj;Batnairamdal Chuluun;Avarzed Amgalanbaatar
    • Journal of Pharmacopuncture
    • /
    • v.26 no.1
    • /
    • pp.18-26
    • /
    • 2023
  • Objectives: Terminalia chebula, the main ingredient of Altan Arur 5, has been used for many years in traditional medicine. This medicine is more effective than other drugs and is used to treat chronic gastritis and gastrointestinal disorders such as peptic ulcers and esophageal reflux. Other ingredients of Altan Arur 5 are Punica granatum (pomegranate), tulip seeds, black balm, and excreta of Trogopterus xanthipes. The main ingredients of T. chebula are antibacterial and analgesic in traditional medicine. Despite having been used for many years and although many studies have been conducted on the beneficial effects of this medicine and its ingredients, the toxicity of Altan Arur 5 has not yet been elucidated. Therefore, we aimed to study the toxicity of Altan Arur 5 to ensure that it is safe to use. Methods: Acute and chronic toxicity of Altan Arur 5 were assessed in 10 Kunming mice and 8 Sprague-Dawley rats, respectively, in different doses. In the acute toxicity study, Altan Arur 5 was orally administered to Kunming mice in doses of 12 g/kg, 24 g/kg, and 48 g/kg for 14 days. In the chronic toxicity study, it was orally administered to Sprague-Dawley rats in doses of 1.25 g/kg, 2.5 g/kg, and 5 g/kg for 12 weeks. Results: No significant differences were observed in the relative organ weights for mice treated with Altan Arur 5 compared with those in the control group. Furthermore, no macro- or microstructural changes were noted in the organs of any group. Conclusion: Our toxicity testing revealed that the traditional medicine Altan Arur 5 has no toxic effects in vivo.

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

Study of Rat Mammary Epithelial Stem Cells In Vivo and In Vitro (생체 및 시험관에서 유선 상피 모세포의 분리와 동정)

  • Nam Deuk Kim;Kee-Joo Paik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.470-486
    • /
    • 1995
  • Mammary epithelial cells contain a subpopulation of cells with a large proliferativ potential which are responsible for the maintenance of glandular cellularity and are the progenitor cells of mammary cancer. These clonogens give rise to multicellular clonal alveolar or ductal units(AU or DU) on transplantation and hormonal stimulation. To isolate putative mammary clonogens, enzymatically monodispersed rat mammary epithelial cells from organoid cultures and from intact glands are sorted by flow cytometry according to their affinity for FITC labeled peanut lectin(PNA) and PE labeled anti-Thy-1.1 antibody(Thy-1.1) into four subpopulations : cells negative to both PNA and Thy-1.1(B-), PNA+cells, Thy-1.1+cells, and cells positive to both reagents(B+). The in vivo transplantation assays indicate that the clonogenic fractions of PNA+cells from out-growths of organoids in primary cultures for three days in complete hormone medium(CHM) are significantly higher than those of cells from other subpopulations derived from cultrues or from intact glands. Extracellular matrix(ECM) is a complex of several proteins that regulated cell function ; its role in cell growth and differentiation and tissue-specific gene expression. It can act as a positive as well as a negative regulator of cellular differentiation depending on the cell type and the genes studied. Regulation by ECM is closely interrelated with the action of other regulators of cellular function, such as growth factors and hormones. Matrigel supports the growth and development of several different multicellular colonies from mammary organoids and from monodispersed epithelial cells in culture. Several types of colonies are observed including stellate colonies, duct-like structures, two- and three-dimensional web structures, squamous organoids, and lobulo-duct colonies. Organoids have the greatest proliferative potential and formation of multi-cellular structures. Phase contrast micrographs demonstrate extensive intracellular lipid accumulation within the web structures and some of duct-like colonies. At the immunocytochemical and electron micrograph level, casein proteins are predominantly localized near the apical surface of the cells or in the lumen of duct-like or lobulo-duct colonies. Squamous colonies are comprised of several layers of squamous epithelium surrounding keratin pearls as is typical fo squamous metaplasia(SM). All-trans retinoic acid(RA) inhibits the growth of SM. The frequency of lobulo-ductal colony formation increased with the augmentation of RA concentration in these culture conditions. The current study models could provide powerful tools not only for understanding cell growth and differentiation of epithelial cells, but also for the isolation and characterization of mammary clonogenic stem cells.

  • PDF