• Title/Summary/Keyword: organic-inorganic composite

Search Result 174, Processing Time 0.033 seconds

Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer (실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가)

  • Kim, Hye Jin;Han, Kyu Sung;Hwang, Kwang Taek;Nahm, Sahn;Kim, Jin Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.631-638
    • /
    • 2019
  • As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.

Ordered Hybrid Nanomaterials from Self-Assembled Polymeric Building Blocks

  • Kim, Dong-Ha
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.309-309
    • /
    • 2006
  • Latest developments on hybrid nanostructured materials fabricated by applying self-assembly strategies on organic/inorganic nanotemplates are discussed. Within this frame, numerous functional nanomaterials including arrays of composite metal/semiconductor nanoparticles, planar waveguides and functional multilayer thin films are generated using self-assembled polymers as templates or building blocks. In particular, surface plasmon resonance based optical sensing is employed to investigate nanofabrication processes occurring in nanoscale dimention. We also suggest unprecedented pathways to hybrid supramolecular multilayer nanoarchitectures in 1D or 2D geometry via layer-by-layer self-assembly.

  • PDF

Development and Quality Evaluation of Environmentally-benign Organic-Inorganic Composite Coated Steel Sheet (환경친화적인 유-무기 복합코팅 강판의 개발과 품질특성)

  • Jo, Du-Hwan;Lee, Jae-Ryung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.134-134
    • /
    • 2008
  • 아연도금강판은 유-무기 코팅 처리를 통해 도금층 표면의 방청성 향상과 추가적인 고기능성을 부여한다. 최근 POSCO 에서는 가전, 건재 및 자동차용으로 사용하기 위해 다양한 Cr-free 코팅강판을 개발하였다. 본 발표에서는 기존의 크로메이트 처리 강판을 대체하기 위해 유-무기 복합코팅 강판 개발과 품질특성을 소개하고자 한다.

  • PDF

Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells (표면처리된 실리콘 카바이드 섬유 복합막의 고분자 전해질 막 연료전지 성능)

  • Park, Jeong Ho;Kim, Taeeon;Juon, Some;Cho, Yongil;Cho, Kwangyeon;Shul, Yonggun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.

Evaluation of Physical, Mechanical Properties and Pollutant Emissions of Wood-Magnesium Laminated Board (WML Board) for Interior Finishing Materials

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.86-94
    • /
    • 2020
  • This study serves as basic research for the development of a new wood-based building finishing material that improved the weakness of inorganic materials such as gypsum board and magnesium board widely used as interior finishing materials and brought out the strength of the wood. The results of evaluating the physical and mechanical properties and the environmental effect related to hazardous substance discharge having manufactured a wood-magnesium laminated composite are as follows. The thermal conductivity and thermal resistance of WML board was improved by about 28~109 percent over magnesium board due to the low thermal conductivity of wood. The adhesive strength of WML board showed a similar result to that of plywood as it exceeds 0.7N/㎟, the adhesive standard of wood veneer which is presented by KS F 3101. Bending strength and screw holding strength were more improved by manufacturing WML board than magnesium board. The WML board manufactured in this study satisfied the criteria for emissions of hazardous substances prescribed in the Indoor Air Quality Control Act, and confirmed the possibility of development as a new wood-based composite material that can replace existing inorganic materials.

Characteristics of Organic NLO Materials in Silica Matrix Prepared by Sol-gel Process (졸-겔공정에 의해 실리카 구조체에 도입된 유기 NLO 물질의 특성)

  • Jung, Mie-Won;Mun, Jeong-Ho;Shul, Yong-Gun;Wada, Tatsuo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.482-487
    • /
    • 1993
  • Organic nonlinear optical materials such as MNA(2-Methyl-4-nitro-aniline), Carbazole 1(5-Nitro-9-hydroxyethyl Carbazole), Carbazole 2(5-Nitro-9-ethyl Carbazole) and DR 1(Disperse Red 1) were incorporated into silica matrix to form a composite thin films. The thermal stability and degree of degradation were compared to these organic-inorganic composite film. Among those films, Carbazole 1 and DR 1 which have terminal -OH group showed enhanced stability for thermal degradation. The effect of polarization and degree of relaxation for the composite thin films incorporated with Carbazole 1 were measured by the absorbance change of UV spectra with time. With polarization treatment of Carbazole 1 incorporated composite film, the intensity of UV absorbance was remarkably reduced. And slow relaxation of Carbazole 1 molecule was suggested from the slightly recovered intensity of UV absorbance after removing the electric field at rooma temperature.

  • PDF

Enhancement of Biodegradation Rate of Petroleum Hydrocarbons-contaminated Soil with Addition of Organic Composite Nutrients and a Chemical Oxidation (유기성 영양분 첨가 및 화학적 산화 연계를 통한 유류오염 토양의 생물학적 정화효율 향상에 관한 연구)

  • Kim, Guk-Jin;Oh, Seung-Taek;Lee, Cheol-Hyo;Seo, Sang-Ki;Kang, Chang-Hwan;Chang, Youn-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.59-66
    • /
    • 2008
  • A biological study was conducted to evaluate the enhancement of landfarming of soil contaminated with petroleum hydrocarbon (TPH) applying organic composite nutrients and a chemical oxidation during bioremediation. The target value of soil TPH after treatment was 500 mg/kg TPH. Addition of an organic compost and liquid swine manure for the removal of soil THP showed higher efficiency as 84.4% and 92.2% respectively than inorganic nutrients of 80.2%. In addition to the removal of non-biodegradable portion of residual hydrocarbons in soil, a chemical oxidation was applied during tailing period of the biological remediation, which showed high remediation efficiency as 98.1% compared with single bioremediation efficiency of 84.7%.

Influence of Machining on Magnetic Properties of Soft Magnetic Composites

  • Igarashi, Kazunori;Miyahara, Masahisa;Morimoto, Koichiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1175-1176
    • /
    • 2006
  • Influences of machining on magnetic properties of soft magnetic composites (SMC's) with addition of two kinds of binder, i.e., organic binder and inorganic one, were investigated. Machining does not affect DC magnetic properties of the SMC compacts. This can be ascribed to their particular structure in which the ironpowder particles are highly isolated by the binder. On the other hand, decrease in resistivity and resultant increase in eddy current loss was confirmed in the machined compacts containing inorganic binder. It is supposed that the brittleadditive binder existing between the iron particles is partly broken, and iron-to-iron contact is formed on the machined surface.

  • PDF

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

Ion Exchange Behavior of $^{137}Cs,\;^{60}Co$ on Diphosil, a new ion exchange resin (Diphosil 이온교환수지에 의한 $^{137}Cs,\;^{60}Co$의 이온교환 거동)

  • Kim, Su-Jeong;Lee, Sang-Jin;Yang, Ho-Yeon;Shin, Sang-Woon
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Diphosil, a new version of the organic-inorganic composite resin developed by ANL has a structure of the chelating diphosphonic acid groups grafted to a silica support. To apply Diphosil for the treatment of liquid radioactive waste from nuclear power plants, the adsorption equilibrium and column experiments were carried out for the main radionuclides, $^{137}Cs\;and\;^{60}Co$, in the liquid radwaste stream. Through the adsorption equilibrium experiments, the removal efficiencies of $^{137}Cs\;and\;^{60}Co$, and the effects of non-radioactive ions on the removal efficiency have been measured in various conditions using radiotracers. The breakthrough curves for the tested tracers were obtained from the laboratory scale column tests using the simulated liquid radioactive waste. In addition, the removal capacity of Diphosil is compared with that of Amberlite IRN 77 resin, generally used in nuclear power plants.