• Title/Summary/Keyword: organic spintronic devices

Search Result 4, Processing Time 0.034 seconds

Interfacial Properties in Cu-phthalocyanine-based Hybrid Inorganic/Organic Multilayers

  • Lee, Nyun Jong;Ito, Eisuke;Bae, Yu Jeong;Kim, Tae Hee
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.261-264
    • /
    • 2012
  • Interfacial properties of 5 nm MgO(001)/7 nm Fe(001)/1.8 nm MgO(001)/t nm Cu-phthalocyanine (CuPc) hybrid multilayers with t = 0, 1, 7, and 10 were investigated by using x-ray photoemission spectroscopy (XPS). Rather sharp interfacial properties were observed in the CuPc films grown on an epitaxial MgO/Fe/MgO(001) trilayer than a MgO/Fe(001) bilayer. This work suggests a new way to improve device performance of organic spintronic devices by utilizing an artificially grown MgO(001) thin layer.

Bonding And Anti-bonding Nature of Magnetic Semiconductor Thin Film of Fe(TCNQ:tetracyanoquinodimethane)

  • Jo, Junhyeon;Jin, Mi-jin;Park, Jungmin;Modepalli, Vijayakumar;Yoo, Jung-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.294-294
    • /
    • 2014
  • Developing magnetic thin films with desirable physical properties is a key step to promote research in spintronics. Organic-based magnetic material is a relatively new kind of materials which has magnetic properties in a molecular and microscopic level. These materials have been constructed by the coordination between 3d transition metal and organic materials producing long-range magnetic orders with a relatively high transition temperature. However, these materials were mostly synthesized as a form of powder, which is difficult to study for their physical properties as well as apply for electronic/spintronic devices. In this study, we have employed physical vapor deposition (PVD) to develop a new organic-based hybrid magnetic film that is achieved by the coordination of Fe and tetracyanoquinodimethane (TCNQ). The IR spectra of the grown film show modified CN vibration modes in TCNQ, which suggest a strong bonding between Fe and TCNQ. The thin film has both ferromagnetic and semiconducting behaviors, which is suitable for molecular spintronic applications. The high resolution photoemission (HRPES) spectra also show shift of 1s peak point of nitrogen and the carbon 1s peaks display traces of charge transfer from Fe to TCNQ as well as shake-up features, which suggest strong bonding and anti-bonding nature of coordination between Fe and TCNQ.

  • PDF

Electrical Characteristics of Magnetic Tunnel Junctions with Different Cu-Phthalocyanine Barrier Thicknesses (Cu-Phthalocyanine 유기장벽 두께에 따른 스핀소자의 전기적 특성 변화 양상)

  • Bae, Yu-Jeong;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.162-166
    • /
    • 2012
  • V-I characteristics of Fe(100)/MgO(100)/Cu-phthalocyanine (CuPc)/Co hybrid magnetic tunnel junctions were investigated at different temperatures. Fe(100) and Co ferromagnetic layers were separated by an organic-inorganic hybrid barrier consisting of different thickness of CuPc thin film grown on a 2 nm thick epitaxial MgO(100) layer. As the CuPc thickness increases from 0 to 10 nm, a bistable switching behavior due to strong charging effects was observed, while a very large magenetoresistance was shown at 77 K for the junctions without the CuPc barrier. This switching behavior decreases with the increase in temperature, and finally disappears beyond 240 K. In this work, high-potential future applications of the MgO(100)/CuPc bilayer were discussed for hybrid spintronic devices as well as polymer random access memories (PoRAMs).