• Title/Summary/Keyword: organic solvents chemical composition

Search Result 20, Processing Time 0.027 seconds

Mechanism of Organogel Formation from Mixed-Ligand Silver (I) Carboxylates

  • Kim, Ji-Yeon;Park, Cheol-Hee;Kim, Sang-Ho;Yoon, Sung-Ho;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3267-3273
    • /
    • 2011
  • Ag(I) carboxylate gelators with mixed-ligands were systemically investigated to understand the mechanism of the organic gel formation. The gelators constructed 3-D networks of nanometer-sized thin fibers which facilitated gel formation in various aromatic organic solvents, even at very low concentrations. The loss of reflection peaks in the X-ray diffraction data indicated the reduction of strong interactions between the long alkyl chains as the Ag(I) carboxylates formed gels by maximizing their interactions with the organic solvents. The gelation temperature ($T_{gel}$) was measured to explore the interaction between the gelator molecules and solvents depending on their composition and concentration. Based on the gelation phenomena, a dissociation/re-association mechanism was proposed.

Chemical Composition of Painting Materials used in Some Korean Shipyards (조선업의 도장 작업시 취급하는 도료중 유해물질 성분에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.156-172
    • /
    • 1999
  • Potential chemical hazards encountered in painting operation of four shipyards and a ship-repair shop were investigated through the material safety data sheets (MSDS). Material safety data sheets (MSDS) for 307 paints, 50 thinners and 34 binders were collected and reviewed. It was shown that various organic solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, ketones, alcohols, glycols, glycol ether acetates and esters were contained in painting materials. Of these solvents, xylene was found in the largest number of painting materials. sixty percent of the thinners contained xylene in the contents of 20-100%. Other most frequently found solvents were 1-methoxypropanol, 1-methoxypropyl acetate, n-butanol, methyl isobutyl ketone, toluene, isopropanol, and n-butyl acetate, etc. Glycol ethers such as 2-methoxyethanol (2-ME), 2-methoxyethyl acetate (2-MEA), 2-ethoxyethanol (2-EE), 2-ethoxyethyl acetate (2-EEA) and 2-butoxyethanol (2-BA) were regarded as having the potential to cause adverse reproductive effects, embryotoxic effect and hematotoxic effects, and were found in some epoxy panting materials. Coal tar pitch was included in some paints(13%) where polynuclear aromatic hydrocarbons (PAHs) could be contaminated. Inorganic pigments such as lead chromate and zinc potassium chromate were found in some paints (8%). The epoxy resin based paints, which may contain isocyanates such as toluene diisocyanates and hexamethylene diisocyanates causing potential sensitization and asthma to upper respiratory organ, were mostly used in the shipyards. The constituents in the MSDS were significantly different from the results analyzed using gas chromatography/mass detector: minor constituents or impurities were omitted in many MSDS. In conclusion, xylene was the most frequent organic solvent in painting materials, and glycol ethers, including 2-ME, 2-MEA, 2-EE, 2-EEA and 2-BA, were found some products. Also, painting workers may be exposed to PAHs, lead, chromate, isocyanates, organic tin and other various chemicals. The compositions of chemicals in painting materials were variable significantly, and the hazards were changed. These facts should be considered in environmental monitoring and control of the hazards.

  • PDF

Spectroscopic Properties of Flavonoids in Various Aqueous-Organic Solvent Mixtures

  • Park, Hyoung-Ryun;Daun, Yu;Park, Jong Keun;Bark, Ki-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.211-220
    • /
    • 2013
  • The characteristic fluorescence properties of quercetin (QCT) and apigenin (API) were studied in various $CH_3OH-H_2O$ and $CH_3CN-H_2O$ mixed solvents. The structure of QCT is completely planar. API is not planar at the ground state but becomes nearly planar at the excited state. If the molecules are excited to the $S_1$ state in organic solvents, QCT exhibits no fluorescence due to excited state intramolecular proton transfer (ESIPT) between the -OH and the carbonyl oxygen, but API shows significant fluorescence because ESIPT occurs slowly. If the molecules are excited to the $S_2$ state, both QCT and API exhibit strong $S_2{\rightarrow}S_o$ emission without any dual fluorescence. As the $H_2O$ composition of both solvents increases, the fluorescence intensity decreases rapidly due to the intermolecular hydrogen bonding interaction. The theoretical calculation further supports these results. The change in fluorescence properties as a function of the solvatochromic parameters was also studied.

Determination of Dissociation Constant of Hydrogen Cupferrate in Methanol-Water and 2-Propanol-Water Solution (Methanol-물 및 2-Propanol-물의 混合溶媒에서의 Hydrogen Cupferrate의 酸解離常數의 決定)

  • Si-Joong Kim;Chang-Ju Yoon;In-Soon Chang
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.119-128
    • /
    • 1966
  • The glass electrode was empirically calibrated in methanol-and 2-propanol-water mixed solvents, by means of which the pH-meter reading could be converted to stoichiometric hydrogen ion concentration. The thermodynamic dissociation constants of hydrogen cupferrate in methanol-and 2-propanol-water solution were potentiometrically determined with the changes in composition of organic solvents at 0.01 and 0.05 of the ionic strength and 25$^{\circ}C$. The empirical formula of the constants with mole fraction (n) of the organic solvent are as follow: methanol-water solution $pK_a$= 2.24n + 4.29 at ${\mu}$ = 0.01 n = 0.0476∼0.642 $pK_a$ = 2.35n + 4.38 at ${\mu}$ = 0.05 n= 0.0446~0.642 2-propanol-water solution $pK_a$= 5.50n + 4.48 at ${\mu}$ = 0.05 n = 0.0253~0.259 The relationships between $pK_a$ of acetic acid, propionic acid and HCup and dielectric constant of some mixed solvents were discussed. It would be considered that the factors effecting $pK_a$ value of weak acid in mixed-solvent are not only dielectric constants but acid-base character and solvation effect of the solvent, etc.

  • PDF

Determination of Dissociation Constant of Hydrogen Cupferrate in Water, Dioxane-Water, and Ethanol-Water Solution (물, Dioxane-물 및 Ethanol-물의 混合溶媒에서의 Hydrogen Cupferrate의 酸解離常數의 決定)

  • Kim, Si-Joong;Yoon, Chang-Ju;Chang, In-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.114-118
    • /
    • 1966
  • The glass electrode was empirically calibrated in dioxane-and ethanol-water mixed solvents, by means of which the pH-meter reading could be converted to stoichiometric hydrogen ion concentration. By the potentiometric titration method, the thermodynamic dissociation constants of hydrogen cupferrate (HCup) with variations of ionic concentration in aqueous solution were determined, and by the extrapolation of the constants the new thermodynamic $pK_a$ value, 3.980${\pm}$0.006, at zero ional concentration was obtained. The thermodynamic dissociation constants of HCup in dioxane-and ethanol-water solution were also potentiometrically determined with the changes in composition of organic solvents at 0.01 and 0.05 of the ionic strength(${mu}$) and 25 $^{\circ}C$. The empirical formula of the constants with mole fraction(n) of the organic solvent are as follow: Dioxane-water solution. $pK_a$= 12.96n + 4.10 at ${\mu}$ = 0.01, n = 0.0228∼0.171 $pK_a$= 12.05n + 4.23 at ${\mu}$ = 0.05, n= 0.0228∼0.171 Ethanol-water solution, $pK_a$= 4.0ln + 4.26 at ${\mu}$= 0.01, n= 0.0395∼0.262 $pK_a$= 3.83n + 4.34 at ${\mu}$= 0.05, n= 0.0395∼0.262

  • PDF

Studies on the Synthesis of $MoH_2O_2(NCS)_3(C_5H_5N)_2$ ($MoH_2O_2(NCS)_3(C_5H_5N)_2$의 합성에 관한 연구)

  • Q. Won Choi;Jun Suk Oh;Kangwoo Lee
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.170-173
    • /
    • 1963
  • A tri-thiocyanate molybdenum (Ⅴ) complex containing pyridine has been prepared by one step process; namely, the solvent extraction of molybdenum (Ⅴ)-thiocyanate complex into organic solvents followed by precipitation of the compound by addition of pyridine to the extract. It is concluded that the compound has a definite composition regardless of the various mole ratios of molybdenum to thiocyanate ion employed in the preparation. The use of hydrazine as the reducing agent eliminates the necessity of working under inert atmosphere and of further purification of the product. Molybdenum (Ⅴ)-thiocyanate (1:3) complex can be quantitatively and selectively extracted with slightly polar organic solvents such as ethyl acetate, and the pyridine complex is quantitatively obtained due to the insolubility of the compound in them. The oxidation state of molybdenum in the compound is + 5 and the formula appears to be $MoH_2O_2(NCS)_3Py_2$ from the contents of Mo and NCS in the compound. The solubility of the compound in various has been studied at $25^{\circ}C$.

  • PDF

Migration of Potential Volatile Surrogate Contaminants from Paper Packaging into Food through Gas Phase (종이포장재로부터 잠재적 휘발성 오염물질의 기체상을 통한 식품으로의 이행)

  • 최진옥;이광수;이동선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.917-920
    • /
    • 2004
  • The migration potential of volatile organic solvents widely employed in the printing process of food packaging was investigated by using a closed experimental system, which contained a food sample and a paper sheet spiked with the contaminant solvents. The studied organic compounds included toluene and p,m,o-xylene which are relatively highly volatile. Typical food samples of caramel, beef jerky and butter were selected based on their chemical composition and were assigned to the migration system at 10, 25 and 4$0^{\circ}C$. The equilibrated migration level was very high with almost complete transfer in the butter with high fat, while caramel of high carbohydrate content and beef jerky of high protein showed migration degree of 37∼56% and 37∼77%, respectively. Temperature did significantly influence the migration on beef jerky with higher level at higher temperature. There was no difference in the migration level among the solvents.

Red ginseng (Panax ginseng Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety

  • Truong, Van-Long;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.214-224
    • /
    • 2022
  • Red ginseng oil (RGO), rather than the conventional aqueous extract of red ginseng, has been receiving much attention due to accumulating evidence of its functional and pharmacological potential. In this review, we describe the key extraction technologies, chemical composition, potential health benefits, and safety of RGO. This review emphasizes the proposed molecular mechanisms by which RGO is involved in various bioactivities. RGO is mainly produced using organic solvents or supercritical fluid extraction, with the choice of method greatly affecting the yield and quality of the end products. RGO contains a high unsaturated fatty acid levels along with considerable amounts of lipophilic components such as phytosterols, tocopherols, and polyacetylenes. The beneficial health properties of RGO include cellular defense, antioxidation, anti-inflammation, anti-apoptosis, chemoprevention, hair growth promotion, and skin health improvement. We propose several molecular mechanisms and signaling pathways that underlie the bioactivity of RGO. In addition, RGO is regarded as safe and nontoxic. Further studies on RGO must focus on a deeper understanding of the underlying molecular mechanisms, composition-functionality relationship, and verification of the bioactivities of RGO in clinical models. This review may provide useful information in the development of RGO-based products in nutraceuticals, functional foods, and functional cosmetics.

An analysis of Volatile Organic Compounds for the Application of Petroleum-based UVCB Substances to the Occupational Safety and Health Act (석유계 UVCB 물질의 산업안전보건법 규제 적용을 위한 일부 휘발성 유기화합물 분석)

  • Jeong-Hee, Han;Na-Young, Park;Na-Roo, Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.371-380
    • /
    • 2022
  • Objectives: To ensure that employers handling petroleum compounds understand whether petroleum-based UVCB (unknown or variable composition, complex reaction products, or biological materials) substances contain hazardous substances and comply with the Occupational Safety and Health Act, petroleum-based UVCB substances were analyzed and the results from samples were compared with MSDS (Material Safety Data Sheet) contents. Methods: Twenty-one petroleum samples were analyzed using GC-MS (Gas Chromatography-Mass Spectrometry), targeting ten volatile organic compounds regulated by the Occupational Safety and Health Act. Results: The target chemicals were detected in 13 out of 21 samples. All 13 samples were in the naphtha (low boiling point naphthas (gasolines)) group. There were also naphtha group samples containing 2% benzene. Some naphtha samples used as solvents contained about 1% benzene. Conclusions: This study shows that naphtha group petroleum substances contain hazardous chemicals in many cases. In particular, if benzene, n-hexane, and toluene with low occupational exposure limits are contained above the limit concentration. Such information should be delivered in the article on MSDS legal regulations.

Effect of Solvent Extraction on the Anti-complementary Activities of Green and Ripe Cucurbita moschata Duch

  • Yang, Jin-Ok;Kim, Chang-Jin;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.133-135
    • /
    • 2001
  • The edible part of cucurbita moschata Duch, which is commonly used as a Korean traditional medicine as well as a popular food source, was studied to isolate anti-complementary substance. Extracts of Cucurbita moschata Duch showed significant anti-complementary activities on the classical pathway of the complement system. Especially, the ripe Cucurbita moschata Duch had more activity than that of the complement system. Especially, the ripe Cucurbita moschata Duch had more activity than that of the green one in terms of the overall anti-complementary activity. Among the extracts of various organic solvents of the ripe Cucurbita moschata Duch, chloroform and ethyl-acetate extracts, which are non-polar solvent extracts, showed the strongest activities. These results suggest that the major difference in the solvent extraction for the anti-complementary substances depends on the change in the chemical composition such as the fatty acid with the degree of ripening.

  • PDF