• Title/Summary/Keyword: organic solute

Search Result 69, Processing Time 0.027 seconds

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

  • Zhenjie Zhuang;Qianying Chen;Xiaoying Zhong;Huiqi Chen;Runjia Yu;Ying Tang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.291-301
    • /
    • 2023
  • Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

Review of Nitrous Oxide Emission by Denitrification in Subsurface Soil Environment (심층토에 있어서 탈질화에 의한 $N_2 O$ 방출의 평가)

  • Chung Doug-Young;Jin Hyun-O;Lee Chaang-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.160-164
    • /
    • 1999
  • Subsurface environments, including the intermediate vadose zone and aquifers, may be contributing to increased atmospheric concentrations of $N_2$O. Denitrification appears to be the major source of $N_2$O in the subsurface environment. In the intermediate vadose zone, the level of denitrifying activity is dependent on the soil morphology, particularly stratified layers within the soil profile, which impede water and solute movement and create conditions favorable for denitrification. Movement of organic C from the soil surface appears to support denitrifying activity by providing an energy source and increasing the consumption of $O_2$. Denitrirication and $N_2$O production have been observed in aquifers but appear to be of greatest significance in shallow unconfined aquifers. The lack of organic C, N $O_2$, or anaerobiosis is often a limiting factor for activity but seems to be site specific. The presence of denitrifying bacteria does not appear to be a major limitation, based on published results, but the ubiquity of denitrifiers in subsurface environments needs to be confirmed. The fate of the $N_2$O produced in subsurface environments is unknown. Transport of $N_2$O by up ward diffusion, by outgassing at contacts with surface waters, and by ground water use need to be quantified to determine the contribution to atmospheric $N_2$O. Contamination of subsurface environment with N $O_3$$^{ }$ and organics has the potential for increasing the contribution to atmospheric $N_2$O by enhancing denitrification .

  • PDF

Recent Advances in Metal Organic Framework based Thin Film Nanocomposite Membrane for Nanofiltration (나노여과를 위한 금속유기구조체 기반 박막 나노복합막의 최근 발전)

  • Kim, Esther;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.35-51
    • /
    • 2021
  • Advancements in thin-film nanocomposite (TFN) membrane technology for nanofiltration is crucial for removing pollutants from natural resources. In recent years, various metal-organic framework (MOF) modifications have been tested to overcome the drawbacks that are inevitable with conventional thin-film composite (TFC) and TFN membranes. In general, MIL-101(Cr), UiO-66, ZIF-8, and HKUST-1 [Cu3(BCT2)] are MOFs that were proven to exhibit excellent membrane performance in terms of solvent permeability and solute rejection; their respective studies are reviewed in this article. Other novelties, such as the simultaneous use of different MOFs and unique MOF layering techniques (e.g., dip-coating, spray pre-disposition, Langmuir-Schaefer film, etc.) are also discussed as they present alternate solutions for membrane enhancement and/or preparation convenience. Not only are these MOF-modified TFN membranes frequently shown to improve separation performance from their respective TFC and TFN membranes, but many reports also explain their potential for a cost-effective and environmentally friendly process. In this review the thin film nanocomposite nanofiltration membrane is discussed.

Sorption of PAHs by Soil Humins and Effect of Soil Inorganic Matrixs (PAHs의 토양휴민과의 흡착특성 및 토양 무기물의 영향 해석)

  • Lim, Dong-Min;Lee, Seung-Sik;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1337-1346
    • /
    • 2006
  • Soil humin is the insoluble fraction of humic materials and play an important roles in the irreversible sorption of hydrophobic organic contaminants onto soil particles. However, there have been limited knowledge about the sorption and chemical properties of humin due to the difficulties in its separation from the inorganic matrix(mainly clays and oxides). In this study, de-ashed soil humins($Hu_1-Hu_6$) were isolated from a soil residues(Crude Hu) after removing alkali-soluble organic fractions followed by consecutive dissolution of the mineral matrix with 2%-HF for 2 hr. The humin samples were characterized by elemental analysis and $^{13}C$ NMR spectroscopic method and their sorption-desorption behavior for 1-naphthol were investigated from aqueous solution. The results were compared one another and that with peat humin. $^{13}C$ NMR spectra features indicate that the soil humin molecules are mainly made up of aliphatic carbons(>80% in total carbon) including carbohydrate, methylene chain. Freundlich sorption parameter, n was increased from 0.538 to 0.697 and organic carbon-normalized sorption coefficient(log $K_{OC}$) values also increased from 2.43 to 2.74 as inorganic matrix of the soil humin removed by HF de-ashing. The results suggest that inorganic phase in humin plays an important, indirect role in 1-naphthol sorption and the effects on the sorption non-linearity and intensity are analyzed by comparison between the results of soil humin and peat humin. Sorption-desorption hysteresis were also observed in all the humin samples and hysteresis index(HI) at low solute concentration($C_e$=0.1 mg/L) are in order of Peat humin(2.67)>De-ashed humin(0.74)>Crude Hu(0.59).

Application of RO Membrane Process for Reuse of MBR Effluent (MBR 유출수 재활용을 위한 RO 막분리 공정에 대한 연구)

  • Yoon, Hyun-Soo;Kim, Jong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1391-1398
    • /
    • 2010
  • Reuse feasibility of MBR effluent of S Electronic Company's organic wastewater as a LCD process water was investigated by a $32m^3/d$ pilot-scale RO membrane process. The effects of operating pressure and permeate flux at constant 85% recovery of RO membrane process using MBR effluent were analyzed for transmembrane pressure and period for CIP by membrane fouling as well as rejection of TOC and conductivity. MBR effluent requires additional treatment to meet the LCD process water quality criteria of TOC<1 mg/L and conductivity<$100{\mu}S/cm$ which is stringent as compared with those of conventional reuse water quality criteria. The RO process operated at 85% recovery with stepwise increasing of permeate fluxes from 12.5 LMH to 22.0 LMH was able to meet LCD process water quality criteria. However, the transmembrane pressure increased and the period of CIP decreased as increasing permeability fluxes due to fouling of RO membrane. The optimum operational conditions of RO membrane process were permeate fluxes of 16.5~18.5 LMH with operating pressure of $6.7{\sim}12.4kgf/cm^2$ and CIP period of 20~25 days at constant 85% recovery.

Synthesis of pH-Sensitive Hydrogel Nanoparticles in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 pH 감응성 하이드로젤 입자의 합성)

  • Yang, Juseung;Ryu, Won;Lee, Sangmin;Kim, Kyusik;Choi, Moonjae;Lee, Youngmoo;Kim, Bumsang
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.453-458
    • /
    • 2009
  • Recently, new methods to synthesize and process polymers without toxic organic solvents are needed in order to solve environmental problems. The use of supercritical carbon dioxide as a solvent for the polymer synthesis is attractive since it is non-toxic, non-flammable, naturally abundant, and the product may be easily separated from the solvent. In this study, we developed the method using super critical $CO_2$ to prepare P(MAA-co-EGMA) hydrogel nanoparticles as an intelligent drug delivery carrier. The effects of concentrations of PtBuMA-PEO as a dispersion stabilizer and AIBN as an initiator on the particle synthesis were investigated. When PtBuMA-PEO concentration increased, the particle size decreased. However, there was no significant difference in the particle size according to the AIBN concentration. There was a drastic change of the equilibrium weight swelling ratio of P(MAA-co-EGMA) hydrogel nanoparticles at a pH of around 5, which is the $pK_a$ of PMAA. At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. In release experiments using Rh-B as a model solute, the P(MAA-co-EGMA) hydrogel nanoparticles showed a pH-sensitive release behavior. At low pH(pH 4.0) a small amount of Rh-B was released while at high pH(pH 6.0) a relatively large amount of Rh-B was released from the hydrogels.

Elution Patterns of Anions in Multi-layered Soils amended with Cow Manure Compost (우분퇴비 처리에 따른 다층구조 토양내 음이온의 용출특성 변화)

  • 김필주;정덕영;이병열
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.25-33
    • /
    • 1997
  • To investigate the effects of cow manure compost(CMC) on soil and water environment as non-point source, the elution patterns of anions were determined in muti-layered soil columns which were consisted of one top and one bottom in combination. The top soil columns were uniformly packed with Ap horizon soils amended with air-dried CMC at different ratios(0, 2, 4, 6%, wt/wt), the bottom ones were packed with of B horizon soils of 15, 30, and 45cm in length. After saturating the each soil column, the leachate were collected from the bottom of the column while the double-ionized water was applied from the surface of the column by constant head method. From the hydraulic conductivity and anion eluted were measured in the leachate. Each saturated hydraulic conductivities for top and the bottom soils were 3$\times$$10^{-4}$sec and 1.6$\times$$10^{-3}$cm/sec. Most of water soluble chloride and sulfate, having non-specific adsorption characteristics onto the soil particles, were eluted within 1 PV, showing that there was no apparent retardation of anion movement with increasing CMC contents in the top soils. The effect of soil depths on anion movement were similar to the results of CMC contents. Sulfate of having both of non-specific and specific adsorption characteristics was also recovered in the effluent within 1 PV, while the elution curves were slightly skewed to the right showing that the CMC affected the movement of sulfate. Phosphate of specific adsorption characteristics was hardly eluted within 5 PV.

  • PDF

Ultrastructural Differentiation of the Vacuole in Mesophyll Tissues of Orostachys (바위솔속 엽육조직 세포 내 액포의 미세구조 분화 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.39 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • In the present study, ultrastructural features of the mesophyll tissue have been investigated in Crassulacean acid metabolism (CAM)-performing succulent Orostachys. A large central vacuole and numerous small vacuoles in the peripheral cytoplasm were characterized at the subcellular level in both developing and mature mesophyll cells. The most notable feature was the invagination of vacuolar membranes into the secondary vacuoles or multivesicular bodies. In many cases, tens of single, membrane-bound secondary vacuoles of various sizes were found to be formed within the central vacuole. multivesicular bodies containing numerous small vesicles were also distributed in the cytoplasm but were better developed within the central vacuole. Occasionally, electron-dense prevacuolar compartments, directly attached to structures appearing to be small vacuoles, were also detected in the cytoplasm. One or more huge central vacuoles were frequently observed in cells undergoing differentiation and maturation. Consistent with the known occurrence of morphologically distinct vacuoles within different tissues, two types of vacuoles, one representing lytic vacuoles and the other, most likely protein storage vacuoles, were noted frequently within Orostachys mesophyll. The two types coexisted in mature vegetative cells but did not merge during the study. Nevertheless, the coexistence of two distinct vacuole types in maturing cells implies the presence of more than one mechanism for vacuolar solute sorting in these species. The vacuolar membrane is known to be unique among the intracellular compartments for having different channels and/or pumps to maintain its function. In CAM plants, the vacuole is a very important organelle that regulates malic acid diurnal fluctuation to a large extent. The membrane invagination seen in Orostachys mesophyll likely plays a significant role in survival under the physiological drought conditions in which these Orostachys occur; by increasing to such a large vacuolar volume, the mesophyll cells are able to retain enormous amounts of acid when needed. Furthermore, the mesophyll cells are able to attain their large sizes with less energy expenditure in order to regulate the large degree of diurnal fluctuation of organic acid that occurs within the vacuoles of Orostachys.