• Title/Summary/Keyword: organic solute

Search Result 69, Processing Time 0.03 seconds

Effect of Alkyl Substituents, Surfactants, and Temperature on the Solubilization of 4-alkylaniline Derivatives by Cationic Surfactants (양이온계면활성제에 의한 4-알킬아닐린 유도체의 가용화에서 알킬치환기, 계면활성제 및 온도의 효과)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.250-259
    • /
    • 2020
  • The solubilization constant (Ks) was determined by the UV-Vis method to investigate the interaction between organic matter (solubilized substance) and surfactant in solubilization. Solubilization constants and thermodynamic functions, according to the hydrophobic interaction between organic mater (4-alkylanilines with different alkyl substituent length) and cationic surfactants (DTAB, TTAB, and CTAB, having different hydrophobic lengths), were measured and calculated at various temperatures and compared with each other. As a result, the hydrophobic interactions between organic matters and cationic micelles increased with increasing the chain length of solute's substituent as well as surfactant's hydrophobe. However, the hydrophobic effect by the alkyl substituent of organic matter was greater than the hydrophobic effect by the surfactant. In addition, the results of the calculated thermodynamic functions showed that 4-alkylaniline was solubilized at the deep place in the micelle and its solubilization was greatly dependent on both the hydrophobic effects of organic matter and surfactant. At the calculated iso-structural temperature, the difference between the maximum and minimum values was less than 1K within the experimental conditions.

Organic Thin Film Transistors with Cross-Linked PVP Gates (Cross-Linked PVP 게이트 유기 박막트랜지스터)

  • Jang Ji-Geun;Oh Myung-Hwan;Chang Ho-Jung;Kim Young-Seop;Lee Jun-Young;Gong Myoung-Seon;Lee Young-Kwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.37-42
    • /
    • 2006
  • The preparation and processing of PVP-gate insulators on the device performance have been studied in the fabrication of organic thin film transistors (OTFTs). One of polyvinyl series, poly-4-vinyl phenol(PVP) was used as a solute and propyleneglycol monomethyl etheracetate(PGMEA) as a solvent in the formation of organic gate solutions. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compounds. From the measurements of electrical insulating characteristics of metal-insulator-metal (MIM) samples, PVP-based insulating layers showed lower leakage current according to the increase of concentration of PVP and poly (melamine-co-formaldehyde) to PGMEA in the formation of organic solutions. The PVP(20 wt%) copolymer with composition of 20 wt% PVP to PGMEA and cross-linked PVPs in which 5 wt% and 10 wt% poly (melamine-co-formaldehyde) hardeners had been additional]y mixed into PVP(20 wt%) copolymers were used as gate dielectrics in the fabrication of OTFTs, respectively. In our experiments, the maximum field effect mobility of $0.31cm^2/Vs$ could be obtained in the 5 wt% cross-linked PVP(20 wt%) device and the highest on/off current ratio of $1.92{\times}10^5$ in the 10 wt% cross-linked PVP(20 wt%) device.

  • PDF

Pseudo-Binary Diffusion Coefficients of Organic Aroma Component - I. The Diffusion Coefficient of Benzaldehyde in Aqueous Sugar Solution - (유기방향물질의 의사 2성분계 확산계수 - 제1보 : 설탕수용액중 Benzaldehyde의 확산계수 -)

  • Kang, An-Soo;Lee, Tae-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.315-323
    • /
    • 1982
  • The measurement of cell constant in a diaphragm-cell method is the most important factor. In order to get the correct cell constant, the diffusion coefficients of potassium chloride were measured, at various concentration and temperature of potassium chloride solution, and at the stirring rate in the cell. The pseudo-binary diffusion coefficients of organic aroma component (benzaldehyde) in sugar solution has been measured at various concentration and temperature with the cell constant obtained above. Experimental results were compared and discussed with the semi-empirical epuations from literatures. And, especially, the diffusion coefficient of benzaldehyde, $D_{ba}$ for a small solute diffusing in a viscous solvent of larger molecules is proportional to the -0.82 power of the viscosity of aqueous sugar solution, ${\mu}$ at constant temperature, $D_{ba}{\mu}^{0.82}=constant$.

  • PDF

Removal Characteristics of Endocrine Disrupting Compounds (EDCs), Pharmaceutically Active Compounds (PhACs) and Personal Care Products (PCPs) by NF Membrane (NF막을 이용한 EDCs, PhACs, PCPs 물질의 제거 특성 평가)

  • Jang, Hyuewon;Park, Chanhyuk;Hong, Seungkwan;Yoon, Yeomin;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.349-357
    • /
    • 2007
  • Reports of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs), and personal care products (PCPs) have raised substantial concern in important potable drinking water quality issues. Our study investigates the removal of EDCs, PhACs, and PCPs of 10 compounds having different physico-chemical properties (e.g., molecular weight, and octanol-water partition coefficient ($K_{OW}$)) by nanofiltration (NF) membranes. The rejection of micropollutants by NF membranes ranged from 93.9% to 99.9% depending on solute characteristics. A batch adsorption experiments indicated that adsorption is an important mechanism for transport/removal of relatively hydrophobic compounds, and is related to the octanol-water partition coefficient values. The transport phenomenon associated with adsorption may also depend on solution water chemistry such as pH and ionic strength influencing the pKa value of compounds. In addition, it was visually seen that the retention was somewhat higher for the larger compounds based on their molecular weight. These results suggest that the NF membrane retains many organic compounds due to both hydrophobic adsorption and size exclusion mechanisms.

A Study on the Photolytic and Photocatalytic Oxidation of VOCs in Air (대기 중 휘발성 유기화합물의 광산화 공정 및 광촉매산화 공정의 처리효율 비교)

  • 서정민;정창훈;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.139-148
    • /
    • 2002
  • Both UV Photolysis and Phtocatalytic Oxidation Processing are an emerging technology for the abatemant of Volatile Organic Compounds (VOCs) in atmospheric -pressure air streams. However, each process has some drawbacks of their own. The former is little known as an application for air pollution treatment, so it has been a rare choice in the field. Therefore we have to do more experiment and study for its application for treatment of VOCs. Although the latter has been used in the industrial fields, it still has a difficulty in decomposing high concentrations of VOCs. To solute these problems, we have been studying simultaneous application of those two technologies. We have studied the effects of background gas composition and gas temperature on the decomposition chemistry. It has shown that concentration of TCE and B.T.X., diameter of reactor, and wavelength of lamp have effects on decomposition efficiency. When using Photolysis Process only, the rates of fractional conversion of each material are found at TCE 79%, Benzene 65%, Toluene 68%, Xylene 76%. In case of Photocatalytic Oxidation Process only, the rates of fractional conversion decreased drastically above 30 ppm. When there two methods were combined, the rates of fractional conversion of each material are enhanced such as TCE 93%, Benzene 75%, Toluene 81%, Xylene 90%. Therefore, we conclude that the combination of Photolysis-Photocatalytic Oxidation process is more efficient than each individual process.

Polymorphism of Calcium Carbonate Crystal by Silk Digested Amino Acid (실크 분해 아미노산에 의한 탄산칼슘 결정의 polymorphism)

  • Kim, Jin-Ho;Kim, Jong Min;Kim, Woo Sik;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1107-1112
    • /
    • 2008
  • Crystallization of calcium carbonate was performed by using aqueous calcium chloride and sodium carbonate for operational simplicity. Reaction time, solute concentrations, pH, and organic additive were varied to get calcium carbonate crystals. Silk fibroin was used as the additive to understand the change of morphology of calcium carbonate crystal. The crystals were analyzed by FE-SEM, XRD, and FT-IR. Reaction time, and pH mainly affected the morphology of crystals. Besides, it was found that silk fibroin inhibited the formation of vaterite and promoted the calcite forms.

Theoretical Study on Hydrophobicity of Amino Acids by the Solvation Free Energy Density Model

  • Kim, Jun-Hyoung;Nam, Ky-Youb;Cho, Kwang-Hwi;Choi, Seung-Hoon;Noh, Jae-Sung;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1742-1750
    • /
    • 2003
  • In order to characterize the hydrophobic parameters of N-acetyl amino acid amides in 1-octanol/water, a theoretical calculation was carried out using a solvation free energy density model. The hydrophobicity parameters of the molecules are obtained with the consideration of the solvation free energy over the solvent volume surrounding the solute, using a grid model. Our method can account for the solvent accessible surface area of the molecules according to conformational variations. Through a comparison of the hydrophobicity of our calculation and that of other experimental/theoretical works, the solvation free energy density model is proven to be a useful tool for the evaluation of the hydrophobicity of amino acids and peptides. In order to evaluate the solvation free energy density model as a method of calculating the activity of drugs using the hydrophobicity of its building blocks, the contracture of Bradykinin potentiating pentapeptide was also predicted from the hydrophobicity of each residue. The solvation free energy density model can be used to employ descriptors for the prediction of peptide activities in drug discovery, as well as to calculate the hydrophobicity of amino acids.

Competition of Sulfate for Sorption Sites of Cecil Bt Soil in Binary Anion System (2중 음이온 체계내에서 시슬 Bt토양의 흡착부위에 대한 황산이온의 경쟁)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 1996
  • Observed results of the adsorption between two competing anions for the shared sorption sites represent that the adsorption phenomena may depends on the characteristics of anion and available sorption sites in a given conditions. In binary systems, adsorption of one species can significantly influence the fate of the other anion, resulting in control of the extent of solute-adsorbate distributions throughout soil profile. And the proton-donation mechanisms by organic anions having a carboxyl as a functional group can also influence the adsorption of inorganic anions onto the hydroxylated sites of Fe and Al oxides. However, study of competitive adsorption of specifically adsorbed anions illustrates some of difficulties which arise in interpretation of reactions at oxide/aqueous solution interfaces. At least two factors prevented a simple analysis of reactions. First, at any pH value the maximum amount of adsorbate taken up at the surface depends on the identity of the anion. Second, it was necessary to postulate the sorption sites where the anion can be adsorbed. Hence, anions having non-specific adsorption characteristics are less capable for sorption sites, compared to those of specific adsorption characteristics, even though competition complies both ordinary and electrostatic interactions for sorption sites. Therefore, competition among chemical species in soil matrix can be of major significance in determining the effective mobility of any reactive anions with sorption sites.

  • PDF

Superconducting properties through ceramic coating condition on high-Tc superconducting tapes (고온 초전 도체의 산화물 코팅 조건 변화에 따른 초전도 특성의 변화)

  • 이남진;하동우;하홍수;장현만;오상수;손명환;권영길;김상현;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.218-221
    • /
    • 2000
  • Currently, Bi-2223 HTS tape is capable of being fabricated in longer than 100m length by industrial processes. But there are some problems in heat treatment of the degree of longer than 100m tape, which is in term of volume occupied with specimen in furnace. The effects of ceramic coating with variable slurry states were studied in Bi-2223 high-temperature superconductor. The HTS tapes coated with oxide were prepared by using dip-coating method on slurry state. Critical current(I$_{c}$) of tapes coated with ceramic materials were equal with 11.5A at 77K after first heat treatment as different slurries. For final heat treatment, Critical current of HTS tapes coated with zirconia oxide mixed in PMMA and PVA organic solute were 20.8A at 77K. The breakdown voltage of HTS tapes coated with zirconia oxide were 3kV in air and 4~7kV in L$N_2$.>.

  • PDF

Accumulation of Food Wastes Liquid Fertilizer using Reverse Osmosis Membrane System (역삼투막을 이용한 음식폐기물 액비의 농축)

  • Cha, Gi-Cheol;Hwang, Myoung-Goo;Lee, Myung-Gyu;Tae, Min-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.159-168
    • /
    • 2002
  • A lab-scale Reverse Osmosis(RO) membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and performance of elimination at different trans-membrane pressure(TMP) in the liquid fertilizer accumulated system. Experimental setup was divided to three different TMP conditions. As a result of experiment, permeability of RO membrane was proportional to the increase of TMP and temperature. After experiment was completed, two types chemical cleaning(remove the organic foulant and inorganic foulant) was done, and recover rate of permeability was each 99.8, 99.7 and 99.7%, respectively. From this experimental data, membrane fouling could be determined that the most of it was recoverable in this system, and major reason of fouling was concentration polarization. Elimination rate of solute substance in the liquid fertilizer indicated very stable(above 99%), except ammonia nitrogen, and the most stable elimination rate was investigated at the highest TMP condition (Run 3).