• Title/Summary/Keyword: organic solute

Search Result 69, Processing Time 0.029 seconds

A Study of the Retention Behavior of Proteins in High-Performance Liquid Chromatography(Ⅰ): The Effect of Solvent and Temperature on Retention Behavior of Proteins in Reversed-Phase Chromatography

  • Dai Woon Lee;Byung Yun Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.510-514
    • /
    • 1993
  • The retention behavior of proteins was investigated by using reversed-phase chromatography (RPC), comparing to the retention behavior of small molecules in RPC. The evaluation was carried out on a SynChropak RP-P($C_{18}$) column with 0.1% aq. TFA-organic solvent modifier such as acetonitrile, isopropanol, and ethanol. The Z value (the number of solvent molecules required to displace the solute from the surface) was a general index for the characterization of protein retention as a function of organic concentration over a range of temperature between 5 and 70$^{\circ}C$. Van't Hoff plots provided the basis for evaluating the enthalpic and entropic changes associated with the interaction between protein and the stationary phase. Z values did not change significantly at the range of temperature showing the consistent ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ values. From these investigation, it was concluded that the retention behavior of proteins in RPC was able to be predicted by the retention parameters applied to small molecules. Furthermore, myoglobin and hemoglobin in RPC as stated above showed a similar retention behavior regardless of their molecular weights.

Reactive Extraction of Organic Acid with Amine Extractant, I. (A Study on the Effects of Extractant and Solvent on the Degree of Extraction in Reactive Extraction of Organic Acid) (아민 추출제에 의한 유기산의 반응추출(I) (유기산의 반응추출시 추출도에 미치는 추출제 및 용매의 영향에 관한 연구))

  • Ryu, Oon-Hyung;Lee, Han-Seob;Yoo, Chul-Hwi;Kim, Yong-Yeul;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.203-213
    • /
    • 1996
  • In physical and reactive extraction system using equilibrium extraction equipment, the effects of extractants, concentration of extractant, and solvent on the degree of extraction were investigated. The organic acids used were acrylic acid and metacrylic acid. Extractants were n-octylamine(OA), di-n-octylamine(DOA), tri-n-octylamine(TOA) and tri-octylmetyl ammonium chloride(TOMAC ; Aliquat 336). We found that the degree of extraction for reactive extraction was 2~9 times than that for physical extraction and that effect of extractants on the degree of extraction of organic acid was the order of OA

  • PDF

Solute patterns of four halophytic plant species at Suncheon Bay in Korea

  • Choi, Sung-Chul;Choi, Deok-Gyun;Hwang, Jeong-Sook;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.37 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • To investigate the solute pattern of salt marsh plants in Suncheon Bay in Korea, plants and soil samples were collected at three sites from July to September 2011. The soil pH around the investigated species was weakly alkaline, 6.9-8.1. The total ion and Cl- content of site 1 gradually increased, while those of site 2 and site 3 were lowest in August and highest in September. The exchangeable $Ca^{2+}$, $Mg^{2+}$ and $K^+$ in the soil were relatively constant during the study period, but the soil exchangeable $Na^+$ content was variable. Carex scabrifolia and Phragmites communis had constant leaf water content and very high concentrations of soluble carbohydrates during the study period. However, Suaeda malacosperma and S. japonica had high leaf water content and constant very low soluble carbohydrate concentrations. Carex scabrifolia accumulated similar amounts of $Na^+$ and $K^+$ ions in its leaves. Phragmites communis contained a high concentration of $K^+$ ions. Suada japonica and S. malacosperma had more $Na^+$ and $Cl^-$ ions than $K^+$ ions in their leaves. Suaeda japonica had higher levels of glycine betaine in its leaves under saline conditions than C. scabrifolia and P. communis. Consequently, the physiological characteristics of salt marsh chenopodiaceous plants (S. japonica and S. malacosperma) were the high storage capacity for inorganic ions (especially alkali cations and chloride) and accumulation of glycine betaine, but monocotyledonous plant species (C. scabrifolia and P. communis) showed high $K^+$concentrations, efficient regulation of ionic uptake, and accumulation of soluble carbohydrates. These characteristics might enable salt marsh plants to grow in saline habitats.

The Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids II: The Effect of Solvent Structure

  • Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1207-1210
    • /
    • 2003
  • The effect of solvent structure on the slope in the plot of ln K vs. solute carbon number was examined. It was found that the free energy of methylene group transfer from the gas phase into a solvent was always negative and that the absolute magnitude of interaction free energy between the methylene group and the solvent was always larger than the absolute magnitude of cavity formation free energy of the methylene group in the solvent. Thus, the slope in the plot of ln K vs. solute carbon number was always positive and its value decreases with increase of solvent polarity since the cavity formation energy of the CH₂ unit increases with increase of solvent polarity while the dispersive interaction energy of the CH₂ unit is virtually invariant. We also examined the effect of sequential addition of CH₂ unit to a solvent molecule upon ln K for three homologous series of solvents: n-alkanes, n-alcohols, and n-nitriles. Characteristic trends in the plots of ln K vs. solvent carbon number were observed for individual solvent groups. A decrease of ln K with solvent carbon number was observed for n-alkanes. An abrupt increase in ln K followed by levelling off was observed for n-alcohols while a final slight decrease in ln K after an abrupt increase followed by rapid levelling off was noted for n-nitriles. All of theses phenomena were found related to variation in cavity formation energy. It was clearly shown that a structural change of a polar solvent by sequential addition of CH₂ units causes an abrupt polarity decrease initially, then gradual levelling off, and finally, conversion to a virtually nonpolar solvent if enough CH₂ units are added.

A Study of the Adsorption Behavior of Organic Acids by Polymeric Adsorbents (고분자 흡착제에 대한 유기산의 흡착성에 관한 연구)

  • Dai Woon Lee;In Ho Lee;Dal Ho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.483-494
    • /
    • 1988
  • The adsorption behavior of aromatic acids on Amberlite XAD-4 resin was investigated by measuring the distribution coefficient by batch method. The adsorption of solutes on XAD-4 was affected by the several factors such as, analyte concentration, the pH of solution and concentration of pairing ion. The enhanced adsorption of solutes on XAD-4 in the presence of tetraalkylammonium salt as an ion pairing reagent, referred to as ion interaction, was suggested to follow a double layer model where the pairing ion occupies a primary layer at the adsorbent while the solute anion and other anions in the system comlpete for the secondary layer. Therefore, the ability of an ion pairing reagent to enhance solute adsorption depended significantly on the type and concentration of counter-ion and co-anion accompanying the ion pairing reagent or salt used for ionic strength control. In addition, a good linear relationship between the logarithm of capacity factors measured by batch and elution method as a function of the concentration of ion pairing reagent and methanol can be used to predict the retention in elution method on the basis of capacity factors measured by batch method.

  • PDF

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Organic Pollutant Transport in Unsaturated Porous Media by Atmospheric Breathing Process(II) Dispersion Coefficient (불포화토양에서 확산에 의한 유기오염물질의 이동)

  • 구자공;황종혁
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.79-82
    • /
    • 1997
  • 토양내에서 오염유기물질이 불포화토양내에 유입될 때의 dispersion coefficient를 adsorption과 desorption과정에 대해 알아보았다. apparent dispersion coefficient를 측정하기 위해 일상적인 상대습도(46%)조건에서 parametric analysis를 행하였다. 실험에 사용된 토양은 fine sand와 silt-clay혼합시료였고, 흐름방향은 상향과 하향으로 하였다. 그리고, Freon gas를adsorbing solute로 사용하였다. 오염물질로는 DCM, TCE, DCB를 사용하였다. 분석을 위해서 linear와 probability scale의 breakthrough curve를 사용하였다. 공기에서의 diffusion coefficient의 예측을 위하여 Graham's law를 계산에 사용하였고, DCM diffusion coefficient는 0.098$\textrm{cm}^2$/s로 계산되었다. 연구결과, adsorption과 desorption의 속도는 차이가 있는 것으로 나타났으며, diffusion이 flow regime을 좌우하는 것으로 나타났다. 그리고, desorption에서의 D$^{a}$ D$^{o}$ 는 1보다 클수도 있다. 또한, dispersion은 silt-clay혼합시료에서의 속도와 함께 증가한다. dispersion은 Freon의 sorption방향에 크게 의존한다.

  • PDF

Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes - (명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -)

  • Choo, Yeon-Sik;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.397-406
    • /
    • 2000
  • In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

  • PDF

Electrical Properties of PVP Gate Insulation Film on Polyethersulfone(PES) and Glass Substrates (Polyethersulfone(PES) 및 유리 기판위에 제작된 PVP 게이트 절연막의 전기적 특성)

  • Shin, Ik-Sup;Gong, Su-Cheol;Lim, Hun-Seoung;Park, Hyung-Ho;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The cpapcitors with MIM(metal-insulator-metal) structures using PVP gate insulation films were prepared for the application of flexible organic thin film transistors (OTFT). The co-polymer organic insulation films were synthesized by using PVP(poly-4-vinylphenol) as a solute and PGMEA(propylene glycol monomethyl ether acetate) as a solvent. The cross-linked PVP insulation films were also prepared by addition of poly(melamine-co-formaldehyde) as thermal hardener. The leakage current of the cross- linked PVP films was found to be about 1.3 nA on Al/PES(polyethersulfone) substrate, whereas, on ITO/ glass substrate was about 27.5 nA indicating improvement of the leakage current at Al/PES substrates. Also, the capacitances of all prepared samples on ITO/glass and Al/PES substrates w ere ranged from 1.0 to $1.2nF/cm^2$, showing very similar result with the calculated capacitance values.

  • PDF

Expression and regulation of prostaglandin transporters, ATP-binding cassette, subfamily C, member 1 and 9, and solute carrier organic anion transporter family, member 2A1 and 5A1 in the uterine endometrium during the estrous cycle and pregnancy in pigs

  • Jang, Hwanhee;Choi, Yohan;Yoo, Inkyu;Han, Jisoo;Kim, Minjeong;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.5
    • /
    • pp.643-652
    • /
    • 2017
  • Objective: Prostaglandins (PGs) function in various reproductive processes, including luteolysis, maternal pregnancy recognition, conceptus development, and parturition. Our earlier study has shown that PG transporters ATP-binding cassette, subfamily C, member 4 (ABCC4) and solute carrier organic anion transporter family, member 2A1 (SLCO2A1) are expressed in the uterine endometrium in pigs. Since several other PG transporters such as ABCC1, ABCC9, SLCO4C1, and SLCO5A1 are known to be present in the uterine endometrium, this study investigated the expression of these PG transporters in the porcine uterine endometrium and placenta. Methods: Uterine endometrial tissues were obtained from gilts on day (D) 12 and D15 of the estrous cycle and days 12, 15, 30, 60, 90, and 114 of pregnancy. Results: ABCC1, ABCC9, SLCO4C1, and SLCO5A1 mRNAs were expressed in the uterine endometrium, and levels of expression changed during the estrous cycle and pregnancy. Expression of ABCC1 and ABCC9 mRNAs was localized mainly to luminal and glandular epithelial cells in the uterine endometrium, and chorionic epithelial cells during pregnancy. Conceptuses during early pregnancy and chorioallantoic tissues from mid to late pregnancy also expressed these PG transporters. $Estradiol-17{\beta}$ increased the expression of ABCC1 and SLCO5A1, but not ABCC9 and SLCO4C1 mRNAs and increasing doses of $interleukin-1{\beta}$ induced the expression of ABCC9, SLCO4C1, and SLCO5A1 mRNAs in endometrial explant tissues. Conclusion: These data showed that several PG transporters such as ABCC1, ABCC9, SLCO4C1, and SLCO5A1 were expressed at the maternal-conceptus interface, suggesting that these PG transporters may play an important role in the establishment and maintenance of pregnancy by regulating PG transport in the uterine endometrium and placenta in pigs.