• Title/Summary/Keyword: organic solute

Search Result 69, Processing Time 0.022 seconds

Transport Characteristics of Alcohol Solutes through Copolymer Hydrogel Membranes Containing Poly(2-Hydroxyethylmethacrylate) (Poly(2-Hydroxyethylmethacrylate)를 포함한 공중합체 수화겔막에 대한 알콜용질의 투과특성)

  • Park, Yu Mi;Kim, Eun Sik;Seong, Yong Gil
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 1990
  • Three kinds of hydrogel membranes were prepared by the copolymerization of 2-hydroxyethylmethacrylate (HEMA) with acrylamide, N, N-dimethylamide and methylmethacrylate in the presence of solvent and crosslinker respectively. The equilibrium water content, relative permeability and partition coefficient of the membranes for alcohol solutes were measured. It has been found that the permeation of organic solute occurs through the water-filled regions in the hydrogel membrane, and that the gpermeability coefficient of organic solute depends on the molecular size. But the permeability of organic solute was controlled by the interaction of solute-membrane at the low water content. By the partition data, it has been shown that the partition of solute is only controlled by hydrophobic interaction between solute and membrane. The diffusion coefficient data were interpreted on the basis of water-solute interaction. It has been found that the diffusion of organic solute is determined by the free volume of water in the membrane, and that hardly depends on polarity-polarizability and hydrogen bonding ability between water and solute.

  • PDF

HDTMA-Bentonite로부터 페놀류 화합물의 경쟁탈착

  • 신원식;김영규;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.15-18
    • /
    • 2001
  • Sorption/desorption studies were conducted to determine sorption/desorption characteristics of phenolic compounds (phenol and 4-chlorophenol) in organically modified natural bentonite. The cationic exchange capacity (CEC) of bentonite was exchanged with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the removal capacity of organic phenol contaminants dissolved in aqueous solution. This modification produces a change of the surface property of bentonite from hydrophilic to organophilic. The single-solute and bi-solute competitive adsorptions were performed In batch mode to investigate the removal of two toxic organic Phenols, chlorophenol and 4-chlorophenol on the HDTMA-bentonite. The adsorption affinity of the 4-chlorophenol was higher than phenol due to higher octanol:water partition coefficient (Kow). The single-solute and bi-solute competitive desorptions were also performed investigate the competitive desorption of the phenolic compounds from HDTMA-bentonite. Freundlich model was used to analyze the single-solute adsorption/desorption results, while the IAST model predicted the hi-solute adsorption/desorption equilibria. The IAST model well predicted hi-solute competitive adsorption/desorption behaviors.

  • PDF

Effects of Polymer Material and Solvent Properties on the Performance of Organic Solvent Nanofiltration Membranes (고분자 소재와 용매특성에 따른 유기용매 나노여과막 성능 분석)

  • Choi, JiHyun;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2022
  • In this work, the solvent permeation and separation performance of organic solvent nanofiltration (OSN) membranes were evaluated. Particularly, the PuraMem (PM) series developed for nonpolar solvents were analyzed and tested in dead-end filtration system. PM membranes exhibited higher permeance for nonpolar solvents compared to polar solvents, and their rejection data did not follow conventional trends with respect to solute size. The data showed that simple solution-diffusion model is not suitable to describe the OSN membrane behavior, and a better solvent-solute-membrane interaction parameter must be developed.

PRELIMINARY MODELING FOR SOLUTE TRANSPORT IN A FRACTURED ZONE AT THE KOREA UNDERGROUND RESEARCH TUNNEL (KURT)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Jeong, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.79-88
    • /
    • 2012
  • Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.

A Study of the Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids: The Effect of Solute Structure

  • Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.459-468
    • /
    • 2002
  • Literature data measured by the author have been processed to report on the effect of solute structure on gas liquid partition coefficients of eleven normal, branched and cyclic alkanes ranging in carbon number from five to nine in sixty nine low molecular weight liquids. The alkane solutes are n-pentane(p), n-hexane(hx), n-heptane(hp), n-octane(o), n-nonane(n), 2-methylpentane(mp), 2,5-dimethylpentane(dp), 2,5-dimethylhexane(dh), 2,3,4-trimethylpentane(tp), cyclohexane(ch), and ethylcyclohexane(ec). The solvent set encompasses most of those studied by Rohrschneider as well as three homologous series of solvents (n-alkanes, 1-alcohols and 1-nitriles) and several perfluorinated alkanes and highly fluorinated alcohols. An excellent linear relationship was observed between lnK and the carbon number of n-alkanes. The effective carbon numbers of branched and cyclic alkanes were determined in a similar fashion to the method of Kovats index. We found that the logarithm of solute vapor pressure multiplied by solute molar volume was a perfect descriptor for the linear relationship with the median effective carbon number.

Potassium Pentane-1,3,3,5-tetracarboxylate Draw Solute Synthesis and Application of Forward Osmosis Process (Potassium Pentane-1,3,3,5-tetracarboxylate 유도용질 합성 및 이를 이용한 정삼투 공정 응용)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2019
  • An organic citrate series draw solute was synthesized using diethyl malonate for forward osmosis. The structure of the final compound potassium pentane-1,3,3,5-tetracarboxylate was confirmed by $^1H-NMR$ and $^{13}C-NMR$ analysis. Osmotic pressure, solubility, water permeability and reverse salt flux were measured for the properties of the draw solute. Forward osmosis results showed that the draw solute exhibited higher water flux than other draw solutes of trisodium citrate and tripotassium citrate. Reverse salt flux of all the organic daw solutes was much lower than that of NaCl. The osmotic pressure of the synthesized draw solute was 25% lower than that of NaCl. The solubility of the draw solute was 317 g/ 100 g water, which is 8.8 times higher than that of NaCl. A commercialized nanofiltration membrane was used for the recovery of the draw solute. The draw solute could be effectively recovered at low pressure.

Evaluation of interaction between organic solutes and a membrane polymer by an inverse HPLC method

  • Kiso, Yoshiaki;Hosogi, Katsuya;Kamimoto, Yuki;Jung, Yong-Jun
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-182
    • /
    • 2014
  • Organic compounds are adsorbed on RO/NF membranes, and the adsorption may influence the rejection of organic compounds by the membranes. Because almost RO/NF membranes are composite membranes, the results obtained by adsorption experiment with using membrane pieces are unable to avoid the influence by the support membrane. In this work, the interaction between membrane polymer and organic solutes was examined by an inverse HPLC methodology. Poly (m-phenylenetrimesoylate), the constituent of skin layer of RO/NF membranes, was coated on silica gel particles and used as a stationary phase for HPLC. When water was used as a mobile phase, almost hydrophilic aliphatic compounds were not effectively adsorbed on the stationary phase, although hydrophobic compounds were slightly adsorbed. The results indicated that the hydrophilic aliphatic compounds are useful probe solutes to examine the molecular sieving effect of a membrane. When water was used as a mobile phase, the aromatic compounds were strongly retained, and therefore $CH_3CN/H_2O$ (30/70) was used as a mobile phase. It was revealed that the adsorption of aromatic compounds was controlled by stacking between solute and polymer and was hindered by non-planar structure and substituents.

Estimation of Bioconcentration Factors in Fish for Organic Nonelectrolytes Using the Linear Solvation Energy Relationship

  • Jung Hag Park;Eun Hee Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.457-461
    • /
    • 1993
  • Bioconcentration factors (BCF) in fish of organic nonelectrolytes are well correlated by a linear solvation energy relationship (LSER) of the form : log BCF= -0.95 + 4.74 $V_I/100 - 4.39{\beta} + 0.88{\alpha}$ where $V_I$ is the intrinsic solute molecular volume and ${\beta}$ and ${\alpha}$ are the solvatochromic parameters that measure hydrogen bond acceptor basicity and donor acidity of the compound. The LSER model can not only correlate the property with an accuracy comparable to molecular connectivity model but also provide a quantitative informationon on the nature and relative strength of solute-target system interactions affecting the property of interest. Such an information can hardly be obtained from molecular connectivity model.

A Study on an Activated Carbon Coated Sensor for the Detection of Marine Pollution (해양오염 감지를 위한 활성탄 코팅 센서에 관한 연구)

  • 최광재;김영한
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.373-378
    • /
    • 2000
  • Oil spill in sea water is the most frequent and significant problem of marine pollution. As an early detection sensor of the pollution, an activated carbon coated quartz crystal is prepared and examined for its performance of detection sensitivity and stability. Powdered activated carbon and phenol resin is coated on the surface of the sensor and the sensor is baked for an hour. Adsorption of acetone dissolved in water and salt water is measured using frequency shift of quartz crystal at different concentrations of solute material. The outcome indicates that the sensor preparation is adequate and the measurement of solute concentration is stable and sensitive enough to be implemented on the monitoring of solute concentration is stable and sensitive enough to be implemented in the monitoring of organic pollution of sea water.

  • PDF

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.