• Title/Summary/Keyword: organic polymers

Search Result 418, Processing Time 0.03 seconds

Fabrication of Single Crystal Poly(3,4-ethylenedioxythiophene) Nanowire Arrays

  • Cho, Bo-Ram;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.537-537
    • /
    • 2012
  • We have studied a fabrication of vapor phase polymerized Poly(3,4-ethylenedioxythiophene) (PEDOT) nanowire arrays for the first time. The vapor-phase polymerization (VPP) technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates, including on the nanoscale, or prepare thin films of self-assembled molecules, micropatterns, or modified microstructures of pure conducting polymers. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is for the arrayed formation of two- or three-dimensional structures with feature sizes as small as tens of nanometers over large areas up to 4 inches across and is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been fabricated to single crystal PEDOT nanowires investigated Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

FT-IR Study of Dopant-wool Interactions During PPy Deposition

  • Varesano Alessio;Aluigi Annalisa;Tonin Claudio;Ferrero Franco
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 2006
  • Coating the fibre surface by in situ oxidative chemical polymerisation of polypyrrole (using $FeCl_3$ as oxidant) is a readily industrial applicable way to give electrical properties to wool with good ageing stability [1], although pre-treatments are required to avoid damage of the cuticle surface due to the acidic condition of the process. FT-IR and EDX analysis reveal that organic sulphonates and sulphates, used as dopants, are absorbed by wool, while chlorine ions are preferably embedded on the polypyrrole layer. The resulting electrical conductivity seems mainly due to the presence of chlorine as counter-ion of polypyrrole; nevertheless, the presence of arylsulphonate in the polymerisation bath increases the electrical conductivity of the coating layer.

Synthesis and Binding Properties of a Calix[4]crown-6-functionalized Polymeric Ion Acceptor

  • Seol, Wan-Ho;Yang, Yu-Sun;Lee, Chil-Won;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.427-430
    • /
    • 2004
  • Calix[4]crown-6-2,4-bis(2-hydroxyethyl ether) (2), which has crown-6 moieties at the 1- and 3-positions and hydroxyethyl functions at the 2- and 4-positions, was prepared for the syntheses of polyester 3 and polyurethane 4 by reactions with adipoyl chloride and hexamethylene diisocyanate, respectively. The ion binding characteristics of monomer 2 and polymers 3 and 4 toward alkali and alkali earth metal ions were measured by liquid-liquid extraction from the aqueous phase into the organic phase. We observed that the polyurethane 4 has a higher binding affinity toward various metal cations when compared to polyester 3, which exhibits cesium ion selectivity.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

Comparison of the Properties of Molecular Composites Blends of Poly(vinyl alcohol)/Conducting Polymer (폴리비닐알콜/전도성고분자 분자복합체와 블렌드의 물성 비교)

  • Kwon, Ji-Yun;Kim, Young-Hee;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-32
    • /
    • 2001
  • Conductive polymers(CPs) are a relatively new class of organic materials displaying as their foremost property a high conductivity combined with very light weight, flexibility and reasonably facile processability[1]. Due to their high conductivity/weight ratio, they have recently evinced much interest in potential application as EMI shielding screens, coatings or jackets for flexible conductors, rechargeable batteries and as possible substitutes for metallic conductors or semiconductors in wide variety of electrical devices[2]. (omitted)

  • PDF

Synthesis of Rosinimide Modified with Polyphenylpyridinylsiloxane and Its Characteristics

  • Kang, Doo-Whan;Kim, Young-Min
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.67-70
    • /
    • 2000
  • Rosin maleic anhydride adduct (RMA)-bisester was prepared by the esterification of chlorinated RMA with hydroquinone. Phenylpyridinylcyclot.isiloxane ($D_3^{Ph,Py}$) was synthesized from phenylpyridinyldichlorosilane in the presence of zinc oxide catalyst, and amino group terminated polyphenylpyridinylsiloxane prepolymer was prepared by equilibrium polymerization of $D_3^{Ph,Py}$ with 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane. Rosinimide (PSMR) was prepared from the imidization of RMA-bisester with polyphenylpyridinylsiloxane prepolymer at 12$0^{\circ}C$ for 7 h using ${\gamma}$-butyrolactone/pyridine. It showed that PSMR had better thermal stalbility than rosinimide modified with polydimethylsiloxane.

  • PDF

The Influence of Polymers on the Hydration of Modified Cement System (속경형시멘트의 수화거동에서 폴리머의 영향)

  • Park, Phil-Hwan;Lee, Kyoung Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.496-501
    • /
    • 2007
  • The properties of the polymer-modified mortars are influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases. Also, this quality of polymer modified cement strongly depend on weather condition. To overcome this problem, polymer-modified cement based on rapid setting cement mortars were prepared by varying polymer/cement mass ratio (P/C) with a constant water/cement mass ratio of 0.5. The effect of polymer on the hydration of this polymer cement is studied on different curing temperature. The results showed that the polymer mortar which is modified with rapid setting cement have superior physical strength properties on independent curing temperature. In addition the PIC ratio, the compressive strength, flexural strength, tensile strength and adhesion strength of mortar is enhances and polymer-modified cement based on rapid setting cement is more beneficial to the improvement of the mortar properties in jobsite.

High performance inkjet printed polymer CMOS integrated circuits

  • Baeg, Kang-Jun;Kim, Dong-Yu;Koo, Jae-Bon;Jung, Soon-Won;You, In-Kyu;Noh, Yong-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.67-70
    • /
    • 2009
  • Printed electronics are emerging technology to realize various microelectronic devices via a cost-effective method. Here we introduce high performance inkjet printed polymer field-effect transistors and application to complementary integrated circuits with p-type and n-type conjugated polymers. The performance of devices highly depends on the selection of dielectrics, printing condition and device architecture. The device optimization and performances of various integrated circuits, e.g., complementary inverters and ring oscillators will be mainly discussed in this talk.

  • PDF

Characteristics of the Topography Image of Polyurethane Polymer LB Films (폴리우레탄 고분자 LB막의 표면형상 이미지 특성)

  • Seo, Jeong-Yeul;Kim, Do-Kyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1708-1710
    • /
    • 2000
  • The synthesis and characterization of polymers for organic Metal/Insulator/Metal(MIM) devices were investigated from LB films. The physicochemical properties of the LB films were examined by UV absorption spectrum and AFM. The AFM images showed for network structure of polyurethane monolayer that the film formed an unsymmetry mesh with intermolecular interaction within the large scale. The stable images are probably due to a strong interaction between the monolayer film and Si substrate. We are unable to obtain molecular resolution in images of the films but did see a marked contrast between images of the bare substrate and those with the network structure film deposited onto it.

  • PDF

The Application of Perfluorinated Cation-exchange Membrane in the Catalytic Process (촉매공정에서 양이온 교환 분리막의 응용)

  • 변홍식
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 1992
  • Functionalized organic polymers have been used as supports for heterogenized homogeneous catalytic process[1]. Sprcific advantages of using these resins as support reagents have been reviewed[2-4]. These include: -ease of by-product separation from the main reaction product usuallyby simple filtration. -prevention of intermolecular reaction of reactive species or functional groups by simulating high dilution conditions[5]. -utility of the "fish-hook" principle in which a minor component in fished out of a large excess substrate by the insoluble polymer[6]. -the possibility of reusing recovered reagents as well as eliminating the use of volatile or noxious substances[7]. Catalysis by ion-exchange membranes is perhaps one of the latest examples of the use of a polymer-supported species. Conceptually, catalysts on membrane supports offer several possible advantages over traditional powder type systems. They are: (1) Membranes immobilize the catalyst, preventing agglomeration. (2) Filtration is unnecessary for the catalyst separation and so complete catalyst recovery is facilitated. (3) Catalytyic and separation processes can be combined, allowing membrane supported catalysts for the continous flow reactors. reactors.

  • PDF