• Title/Summary/Keyword: organic polymers

Search Result 418, Processing Time 0.027 seconds

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary (강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰)

  • Im, Sungbin;Bu, Sang Don;Jeong, Chang Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Synthesis and Properties of Poly[oxy(arylene)oxy(tetramethyldisilylene)]s via Melt Copolymerization Reaction

  • Jung, Eun Ae;Park, Young Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1637-1642
    • /
    • 2013
  • We carried out the melt copolymerization reactions of 1,2-bis(diethylamino)tetramethyldisilane with several aryldiols such as, 4,4'-biphenol, 4,4'-isopropylidenediphenol, 9H-fluoren-9,9-dimethanol, and 4,4'-(9-fluorenylidene) bis(2-phenoxyethanol) to afford poly[oxy(arylene)oxy(tetramethyldisilylene)]s containing fluorescent aromatic chromophore groups in the polymer main chain: poly[oxy(4,4'-biphenylene)oxy(tetramethyldisilylene)], poly[oxy{(4,4'-isopropylidene) diphenylene}oxy(tetramethyldisilylene)], poly[oxy(9H-fluorene-9,9-dimethylene) oxy(tetramethyldisilylene)], and poly[oxy{4,4'-(9-fluorenylidene)bis(2-phenoxyethylene)}oxy(tetramethyldisilnylene)]. These prepared materials are soluble in common organic solvents such as $CHCl_3$ and THF. The obtained polymers were characterized by several spectroscopic methods such as $^1H$, $^{13}C$, and $^{29}Si$ NMR. Further, FTIR spectra of all the polymers exhibited characteristic Si-O stretching frequencies at 1014-1087 $cm^{-1}$. These polymeric materials in THF showed strong maximum absorption peaks at 268-281 nm, strong maximum excitation peaks at 263-291 nm, and strong maximum fluorescence emission bands at 314-362 nm due to the presence of tetramethyldisilylene and several arylene chromophores in the polymer main chain. TGA thermograms indicated that most of the polymers were stable up to $200^{\circ}C$ with a weight loss of 3-16% in nitrogen.

Crystallization and Melting Behavior of Silica Nanoparticles and Poly(ethylene 2,6-naphthalate) Hybrid Nanocomposites

  • Kim Jun-Young;Kim Seong-Hun;Kang Seong-Wook;Chang Jin-Hae;Ahn Seon-Hoon
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.146-154
    • /
    • 2006
  • Organic and inorganic hybrid nanocomposites based on poly(ethylene 2,6-naphthalate) (PEN) and silica nanoparticles were prepared by a melt blending process. In particular, polymer nanocomposites consisting mostly of cheap conventional polyesters with very small quantities of inorganic nanoparticles are of great interest from an industrial perspective. The crystallization behavior of PEN/silica hybrid nanocomposites depended significantly on silica content and crystallization temperature. The activation energy of crystallization for PEN/silica hybrid nanocomposites was decreased by incorporating a small quantity of silica nanoparticles. Double melting behavior was observed in PEN/silica hybrid nanocomposites, and the equilibrium melting temperature decreased with increasing silica content. The fold surface free energy of PEN/silica hybrid nanocomposites decreased with increasing silica content. The work of chain folding (q) for PEN was estimated as $7.28{\times}10^{-20}J$ per molecular chain fold, while the q values for the PEN/silica 0.9 hybrid nanocomposite was $3.71{\times}10^{-20}J$, implying that the incorporation of silica nanoparticles lowers the work required to fold the polymer chains.

Grignard Metathesis Polymerization and Properties of 1,1-Disubstituted-2,5-dibromo-3,4-diphenylsiloles

  • Park, Young Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1825-1831
    • /
    • 2014
  • Grignard metathesis polymerizations of 1,1-disubstituted-2,5-dibromo-3,4-diphenylsiloles such as 1,1-dimethyl-2,5-dibromo-3,4-diphenylsilole, 1,1-diethyl-2,5-dibromo-3,4-diphenylsilole, 1,1-diisopropyl-2,5-dibromo-3,4-diphenylsilole, and 1,1-dihexyl-2,5-dibromo-3,4-diphenylsilole were performed to yield poly(1,1-disubstituted-3,4-diphenyl-2,5-silole)s containing fluorescent aromatic chromophore groups such as phenyl and silole in the polymer main chain: poly(1,1-dimethyl-3,4-diphenyl-2,5-silole), poly(1,1-diethyl-3,4-diphenyl-2,5-silole), poly(1,1-diisopropyl-3,4-diphenyl-2,5-silole), and poly(1,1-dihexyl-3,4-diphenyl-2,5-silole), respectively. The obtained materials are highly soluble in common organic solvents such as chloroform and tetrahydrofuran. Fourier-transform infrared spectra of all the polymers have characteristic C=C stretching frequencies at $1620-1628cm^{-1}$. The prepared organosilicon polymers exhibit strong absorption maximum peaks at 273-293 nm in the tetrahydrofuran solution, showing a red-shift of 18-34 nm relative to those of the monomer, strong excitation maximum peaks at 276-303 nm, and strong fluorescence emission maximum bands at 350-440 nm. Thermogravimetric analysis shows that most of the polymers are stable up to $200^{\circ}C$ with a weight loss of 6-16% in nitrogen.

Synthesis and Characterization of Poly(9,9-dioctylfluorene-2,7-vinylene) for Light Emitting Diode Application

  • Jin, Sung-Ho;Park, Hye-Jin;Kim, Jin-Young;Lee, Kwang-Hee;Gal, Yeong-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.336-339
    • /
    • 2002
  • Fluorenevinylene-based EL polymers, poly(9,9-dioctylfluorene-2,7-vinylene) (PFV) and poly[(9,9-dioctylfluorene-2,7-vinylene)-co-{2-methoxy-5-(2 ethylhexyloxy)-1,4-phenylenevinylene}] (PFV-co-MEH-PPV), have been synthesized by Gilch polymerization method. The resulting polymers were soluble in common organic solvents and easily spin cast onto the indium-tin oxide (ITO) substrate. The weight average molecular weight and polydispersity of PFV and PFV-co-MEH-PPV were in the range of 22.2 - 43.2 x $10^4$ and 1.9 - 3.0, respectively. Double-layer light-emitting diodes with ITO/PEDOT/Polymer/Al configuration were fabricated. PFV-co-MEH-PPV showed better EL properties than those of PFV and MEH-PPV The turn-on voltage of poly(9,9dialkylfluorene) derivatives were dramatically decreased to the 2.5 V compared to fluorene-based EL polymers. The maximum brightness and luminescence efficiency were up 7 to 1350 cd/$m^2$ and 0.51 Cd/A.

  • PDF

Noble Aromatic Poly(amide-imide)s Derived from 1,2-Bis(4-trimellitimidophenoxy)benzene (1,2-Bis(4-trimellitimidophenoxy)benzene으로 부터 유도된 신규 방향족 폴리아미드이미드)

  • Jeong, Hwa-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • A series of noble poly(amide-imide)s and copoly(amide-imide)s bearing 1,2-bis(4-phenoxy)benzene units were synthesized by the direct polycondensation of 1,2-bis(4-trimellitimidophenoxy)benzene[1,2-PTPB] with a combination of commercially available aromatic diamines and diacids such as m-phenylene diamine, p-phenylene diamine(PPD), isophthalic acid and terephthalic acid(TA) in N-methyl-2-pyrrolidone(NMP) using triphenyl phosphite and pyridine as a condensing agent in the presence of dehydrating agent ($CaCl_2$). The resulting polymers had inherent viscosities in the range of 0.37~0.78 dL/g and most of them were soluble m common organic solvents including NMP, dimethylacetamide, dimethylsulfoxide, dimethylformamide, and m-cresol. Wide-angle X-ray diffractograms revealed that the copoly(amide-imide) derived from PPD with mixed acids of 1,2-BTPB and TA, showed crystalline nature, whereas all of the other polymers were found to be amorphous. The glass transition temperatures of the polymers occurred over the temperature range of $270{\sim}323^{\circ}C$ in their differential scanning calorimetry curves and their 10% weight loss temperature, determined by thermogravimetric analysis in air and nitrogen atmosphere, were in the range $465{\sim}535^{\circ}C$, $500{\sim}550^{\circ}C$, respectively, indicating their good thermal stability.

Release Profile of Peptide from Biodegradable Microspheres: Comparison of Blending and Multiple Emulsion Method (고분자 혼합법과 다중 에멀젼법에 의해 제조된 생분해성 미립구로부터 펩타이드의 용출에 관한 연구)

  • Jung, Goo-Young;Kim, Jung-Kwoun;Park, Mork-Soon;Myung, Pyung-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.4
    • /
    • pp.245-251
    • /
    • 2006
  • The novel microsphere blending and multiple emulsion method by single process was tried to prepare sustained release microspheres which release a physiologically active substance for long periods of time. A drug was separately dissolved in each of two or more oils containing biodegradable polymers to give the primary oil phases. The primary oil phases were dispersed in single aqueous phase in succession. From the drug-dispersed solution, the organic solvent was removed to produce microspheres. The accelerated drug release from the microsphere formulation prepared by single process through the multiple emulsion method was very similar to a physical blending of separately prepared microspheres using the same polymers. But long term release was not same. In this study, leuprorelin acetate loaded poly(lactide-co-glycolide) microsphere formulation for one-month delivery was developed by the multi-emulsion method followed by solvent extraction/evaporation method.

Electrical Conductivity Properties of the Vacuum Forming Packing Materials by Ion Implantation (이온주입에 의한 진공성형 포장재의 전기전도 특성)

  • 이재형;이찬영;길재근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1055-1061
    • /
    • 2003
  • A study has been made of surface modification of various organic materials by ion implantation to increase the surface electrical properties. The substrate used were PP(polypropylene), PET(polyethylene teraphthalate), ECOP(ethylene copolyester), PS(polystyrene). N$_2$, Ar ion implantation was performed at energies of 40 and 50keV with fluences from 5${\times}$ 10$\^$15/ to 7${\times}$10$\^$16/ ions/$\textrm{cm}^2$ with and without H$_2$O gas environment. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species, atmosphere of chamber and kind of polymer. In result, surface conductivity of polymers irradiated with atmosphere gas H$_2$O was 10 times more higher than normal vacuum atmosphere, but after 90 hours, surface conductivity returned to the without H$_2$O gas atmosphere condition caused by aging effect. After vacuum forming, surface resistance value was changed to over 10$\^$16/$\Omega$/$\square$, because creation of surface cracks.

Synthesis and Characterization of Poly(arylene-ethynylene)s with Ferrocene Unit by Reaction of 1,1'-Bis(ethynyldimethylsilyl)ferrocene and Aromatic Dihalides

  • Lee, In-Sook;Lee, Chong-Gu;Kwak, Young-Woo;Gal, Yeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • New poly(arylene-ethynylene)s with silicon-containing ferrocene moiety in the polymer main chain were synthesized via the C-C bond forming reactions of 1,1´-bis(ethynyldimethylsilyl)ferrocene and various aromatic dihalides in high yields. The aromatic dihalides include 1,4-dibromobenzene, 4,4´-dibromobiphenyl, 9,10-dibromoanthracene, 2,5-dibromopyridine, 2,5-dibromothiophene, and 2,6-diiodo-4-nitroaniline. The polymer structures and properties were characterized by such instrumental methods as NMR $(^1H-,\;^{13}C-,\;and\;^{29}Si-)$, IR, UV-visible spectroscopies and TGA/DSC. The spectral data indicated that the present polymers have the regular alternating structure of 1,1´-bis(ethynyldimethylsilyl)ferrocenylene and arylene units. The resulting polymers were completely soluble in such organic solvents as methylene chloride, chloroform, benzene, chlorobenzene, and THF. The thermal behaviors of the resulting polymers were examined.

Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young;Seo, Eun-Su;Kim, Seong-Hun;Takeshi Kikutani
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2003
  • Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.