• Title/Summary/Keyword: organic pollutants

Search Result 793, Processing Time 0.031 seconds

Evaluation of Organic Matter and Trace Metal Contamination in Surface Sediments around the Geum River Estuary using Sediment Quality Guidelines (퇴적물 오염기준을 이용한 금강 하구역 표층 퇴적물내 유기물 및 미량금속 오염 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Sook-Yang;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.930-940
    • /
    • 2013
  • We evaluated contamination with organic matter and trace metals by analyzing grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Al, Fe, Cu, Pb, Zn, Cd, Ni, Cr, Mn, Hg, and As) in surface sediments at 28 stations around the Geum River estuary in July 2008. The surface sediments in the estuary were mainly composed of coarse sediment (sand and muddy sand), with mean grain size (Mz) ranging between $2-4{\O}$. The high concentrations of IL, COD, and trace metals were mainly found at stations in front of the Gusan outer port and industrial complex, and near the Seocheon coast with relatively fine sediments. In addition, the concentrations of IL and all trace metals, except Pb and As, showed good positive correlations with Mz, indicating that the concentrations of organic matter and trace metals were mainly dependent on sediment grain size. The concentrations of COD, AVS, and trace metals in most sediments did not exceed the sediment quality guideline (SQGs). Although the sediments in the study region are not polluted with organic matter and trace metals, there are many point sources of pollutants, such as Gusan port and industrial complex, Janghang refinery, and a thermoelectric power plant around the Geum River estuary. Thus, the management of coastal environments through periodic monitoring of organic matter and trace metals is required in the future.

A Study on the Health Risk Assessment of Volatile Organic Compounds in a Petrochemical Complex (석유화학단지의 휘발성 유기화합물로 인한 인체 위해도 평가에 관한 연구)

  • 이진홍;김윤신;류영태;유인석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.257-267
    • /
    • 1997
  • This study focuses on the health risk assessment of airborne volatile organic compounds (VOCs) in a petrochemical complex, with several emphases on a risk assessment method. The first emphasis is on the importance of hazard identification to determine the likely carcinogenic potential of a VOC. Without considering this type of information, a direct comparison of the carcinogenic risks of two pollutants is meaningless. Therefore, wer suggest that this type of information be prepared and be listed with the estimate of cancer risk in parallel. The second emphasis is on the selection of a better dose-response model to estimate unit risk or cancer potency factor of a carcinogenic VOC. Finally, probilistic risk assessment method is discussed and recommended to use within a comparison of conventional point-estimate method. A health risk assessment has also been carried out. For non-carcinogenic risk, even the highest hazard index for carbon tetrachloride is estimated to be less than 1 with the other VOCs less than 0.03. However, the lifetime cancer risk from the inhalation of airborne VOCs is estimated to be about $2.6 \times 10^{-4}$ which is higher than the risk standard of $10^{-6}$ or even $10^{-5}$. Therefore, the investigation into domestic petrochemical complexes should be strengthened to obtain more fine long-term airborne VOC data.

  • PDF

Characteristics of Hazardous Air Pollutants in the Steel Industrial City, Pohang (II) - Volatile Organic Compounds (철강산업도시 포항지역 유해대기오염물질의 오염특성 (II) - 휘발성유기화합물)

  • Kim, Min-ji;Seo, Young-Kyo;Cho, Byoung-Yoon;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.244-258
    • /
    • 2018
  • We performed this study to investigate the spatial, seasonal, and daily variations of the concentrations of volatile organic compounds (VOCs) in Pohang, where large steel industrial complexes are located. Ambient air sampling was undertaken at 4 sites during 4 seasons. Each sample was taken for 4 hours continuously for 8 consecutive days per season at each site. Three sites were located within the Pohang city, but one as a control site in Gyeongju. A total of 72 individual VOCs were determined by thermal desorption coupled with GC/MS, including aliphatics, aromatics, carbonyls and halides. The most abundant VOC was toluene, being followed by ethylbenzene and xylenes. Benzene concentrations(c.a. 0.7 ppb) were found to be much lower than the national ambient standard of 1.5 ppb. Overall, the VOCs levels in Pohang appeared to be lower than other national industrial complexes in Korea such as Shiwha-Banwol, Yeosu-Gwangyang, Gumi, and Ulsan. This implies that steel industry may not give significant impacts on the atmospheric levels of VOCs as much as petrochemical, electronic, and/or textile industries, where large amounts of organic solvents are used.

Inquiry of Water Environment in Mihocheon (Stream) - Water Quality Monitoring focused on TOC - (미호천의 물 환경 탐구 - TOC를 중심으로 한 수질모니터링 -)

  • Lyu, Jai Hong;Lee, Du Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.731-739
    • /
    • 2007
  • In this study, water quality monitoring focused on TOC was performed at 5 points in Mihocheon (Stream) from January to December 2006. And 10 parameters (water temperature, pH, DO, EC, turbidity, SS, BOD, $PO_4-P$, TOC, TN) were monitored every month for one year. According to this study, TOC increased towards the lower stream (#4~#5). Correlation coefficients between TOC and DO, EC, turbidity, SS, BOD, $PO_4-P$, TN were -0.126, 0.351, 0.320, 0.286, 0.711, 0.525, 0.666. TOC was highly related to BOD. As a result of linear regression analysis, regression equation between BOD and TOC was BOD=0.58TOC+1.90 ($R^2=0.506$). In Mihocheon (Stream), BOD/TOC ratio decreased towards the lower stream. This results show decrease of ratio of biodegradable organic material to total organic pollutants towards the lower stream. This study is significant since it has revealed the potential value of TOC as organic material indicator for inquiry of water quality characteristics in the natural water system.

The Characteristic of Volatile Organic Compounds(VOCs) Emission from the Type of Indoor Building Materials as the Temperature and Humidity (온.습도에 따른 건축 내장재별 휘발성유기화합물의 방출특성)

  • Seo, Byeong-Ryang;Kim, Shin-Do;Park, Seong-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.292-303
    • /
    • 2006
  • The Volatile Organic Compounds(VOCs) are emitted from various sources and have lots of different form. Recently human are spending the many times at indoor area and indoor air pollution is issued the important social problem. The emission sources of indoor air pollutants are very various, also indoor building materials are composed of very complex chemical compounds, these indoor building materials discharge very much VOCs and other hazardous compounds. In this study, we performed the small chamber test to investigate the VOCs emission concentration and characteristics involving five kinds of the indoor building materials(furniture material, wooden floor, wall paper, paint and tile) under different conditions of four temperature and relative humidity as account of the air flow rate(AFR), air exchange rate(AER), loading factor and air velocity respectively. As the result, It was showed that building materials are emitted the highest VOCs concentration at the beginning of experiment and furniture material is emitted the highest VOCs concentration. Most of the materials were affected by temperature, but paint and tile material were affected by humidity.

Reaction Mechanism and Kinetics of Degradation for Refractory Organic Pollutants in Water by Ultrasonic Irradiation

  • Sohn, Jong-Ryeul;Moon, Kyung-Hwan
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.123-127
    • /
    • 2003
  • This experiment was performed to investigate the characteristics of sonolytic reaction as the basic data for development of the ultrasonic AOP(Advanced Oxidation Process) process from which the refractory organic compounds in aqueous solution which are not readily removed by the existing conventional wastewater treatment processes can be destructed and removed. Trichloroethylene (TCE), benzene, and 2,4-dichlorophenol(DCP) were used as the samples, and their destruction efficiency were measured in terms of experimental parameters of the initial solution concentration, initial solution pH, reaction temperature, acoustic frequencies and intensities. Results showed that the destruction efficiencies of all of the sample materials were above 80% within 120 minutes of sonolytic reaction in all reaction condition. The reaction order of these three compounds was verified as Pseudo first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds could be removed by the ultrasonic irradiation with radicals, such as H$.$and OH$.$causing the high increase of pressure and temperature. Finally, it appears that the new AOP technology using ultrasonic irradiation can be applied to the treatment of refractory substances which are difficult to be decomposed by the conventional methods.

  • PDF

Application of Discrete Wavelet Transform for Detection of Long- and Short-Term Components in Real-Time TOC Data (실시간 TOC 자료의 장.단기 성분의 검출을 위한 이산형 웨이블렛 변환의 적용)

  • Jin, Young-Hoon;Park, Sung-Chun
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.865-870
    • /
    • 2006
  • Recently, Total Organic Carbon (TOC) which can be measured instantly can be used as an organic pollutant index instead of BOD or COD due to the diversity of pollutants and non-degradable problem. The primary purpose of the present study is to reveal the properties of time series data for TOC which have been measured by real-time monitoring in Juam Lake and, in particularly, to understand the long- and short-term characteristics with the extraction of the respective components based on the different return periods. For the purpose, we proposed Discrete Wavelet Transform (DWT) as the methodology. The results from the DWT showed that the different components according to the respective periodicities could be extracted from the time series data for TOC and the variation of each component with respect to time could emerge from the return periods and the respective energy ratios of the decomposed components against the raw data.

A Mathematical Model Proposed for the Prediction of the Fate of Priority Organic Pollutants Spilled in Streams: Dynamic Simulations and Sensitivity Analysis (하천에 유입된 유독성 유기오염물의 농도분포를 예측하기 위한 수학적 모형의 개발: Dynamic simulations 및 민감도 분석)

  • Ko, Kwang Baik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.265-274
    • /
    • 1992
  • A mathematical model was proposed to predict the fate of a priority organic pollutant, anthracene, accidently spilled into a stream. The model consists of 6 differential equations with 5 input variables and 9 rate constants. Volatilization, biodegradation, adsorption/desorption, photodegradation as well as the convective inputs and outputs are included in the model. As a result of a series of dynamic simulations and sensitivity analyses under the given conditions, the concentrations of the organic chemical could be predicted within a detection limit in the stream. It was also suggested that the rate constant for diffusion/transport and adsorption rate constant are the most influential ones for predicting the chemical conentrations in dissolved and particulate phase. The model proposed appears to be a useful tool for assessing chemical spills.

  • PDF

A Study on Indoor Air Pollutants Reduction Effect by Plants per Season (식물에 의한 계절별 실내공기오염물질 저감효과에 관한 연구)

  • Song, Jeong Eun;Kim, Yong Shik;Sohn, Jang Yeul
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • This study aims at examining the reduction of indoor air contaminants by plants placed in an indoor space. The effect of reducing the concentration of air contaminants by three species of plants was studied in a full-scale mock-up model. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica and Ficus benjamiana which were verified as air-purifying plants by NASA. Their positions and amount were controlled. Two conditions for the amount of plants(10%, 5%) and positions(sun-shine, scatter) were used in two separate rooms whose dimensions are identical. The concentration of Volatile Organic Compounds(VOCs) was monitored three hours after the plants were placed and three days after the plants were placed. The variations of concentration of Benzene, Toluene, Etylbenzene, Xylene, Stylene and Formaldehyde, which are all known as the major elements of Volatile Organic Compounds were monitored. The more plants were used, the more a reduction of indoor air contaminants occurred. The effect of reducing the concentration of air contaminants increased when the amount of plants increased.

Adsorption-DAF Hybrid Process for the Simultaneous Removal of Algae and Organic Compounds (조류와 유기화합물의 동시제거를 위한 흡착 - DAF 복합공정)

  • Lee, Jae-Wook;Kwak, Dong-Heui;Choi, Seung-Phil;Jung, Heung-Joe
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 2004
  • Dissolved air flotation (DAF) is an effective solid/liquid separation process for low density floc particles such as algal, color-alum and clay-alum flocs produced from low turbidity water. The removal of taste and odor-causing organics (2-mthylisoboneol and geosmin) originating from algae in drinking water is a local and worldwide concern. Although DAF has been effectively applied for the removal of suspended solid, its application for the treatment of dissolved organic carbon is very limited. In this study, a new hybrid system consisting of adsorption and DAF processes was introduced for the simultaneous removal of algae and taste and odor-causing organics. Powdered activated carbon (PAC) was used as an adsorbent. In this proposed system, the major concern of eliminating the spent PAC from the system was also addressed. It was found that zeta potential of algae and PAC was increased with coagulant dosage, and the removal efficiency in DAF was also enhanced up to 90~95% under the given experimental conditions. Based on this study, the hybrid process was found to be a promising technology for the simultaneous removal of algae and dissolved organic pollutants.