• Title/Summary/Keyword: organic nitrogen

Search Result 2,517, Processing Time 0.037 seconds

Studies on the Soil Properties and Fertilizer Recommendation for Grass Lands to be Established (산지초지(山地草地) 조성대상지(造成對象地) 토양특성(土壤特性)과 시비추천(施肥推薦))

  • Lee, Hyub-Sung;Hur, Bong-Koo;Yoon, Kwan-Hee;Son, Eung-Ryong;Um, Ki-Tae;Noh, Dae-Chul;Kim, Young-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.301-306
    • /
    • 1989
  • For the agricultural utilization of Korean forest land resources, which constitutes most of country, the distribution of environment and soil physico-chemical properties of establishable grass lands were clarified. The surveyed data were analized for the reasonable utilization and management of establishable grass land. The results were as follows ; 1. About 50.2% of the grass lands to be established were located under the 200m in altitude. The higher the altitude was, the more the organic matter content. 2. Tall type grass species such as Miscanthus purpurascens, Purple eulalia, and Themeda Japonica covered 71.3% of the natural vegetation in the soils of grass land to be established. 3. The extent of sandy and clayey soils which might be limited in the establishment of grassland was only 3.3%, meanwhile majority of the soils were in the favourable condition for grassland that is about 94% have more than 20cm in available soil depth and about 60.5% of the soils have less than 10% of gravels and stones in the soil profiles. 4. The chemical properties of the prearranged grassland soils were worse than the established grasslands, especially in the content of available $P_2O_5$. 5. The amount of fertilizer recommended for meadow were 286kg of nitrogen per hectare, 271kg of phosphorus, 224kg of potassium and 2040kg of calcium per hectare, but for grazing land were 201, 204, 136 and 1920kg/ha respectively.

  • PDF

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Effect of Swine Liquid Manure on Soil Chemical Properties and Growth of Rice (Oryza sativa L.) (양돈분뇨 발효액비 시용이 토양 화학성과 벼 (Oryza sativa L.) 생육에 미치는 영향)

  • Lee, Kyu-Hoi;Yoo, Jae-Hong;Park, Eun-Ju;Jung, Yeong-In;Tipayno, S.C.;Shagol, C.C.;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.945-953
    • /
    • 2010
  • This study was conducted to evaluate the effect of swine liquid manure (SLM) on rice grown in Yeonggwang-gun in 2008. The treatments consisted of SLM and chemical fertilizer (CF) based on the recommended amount of nitrogen (11 kg N $10a^{-1}$). The Total N content of the SLM used was 2,881 mg $L^{-1}$. Plant height at the early stage of growth and tiller number were not significantly different between plots applied with swine liquid manure and those with chemical fertilizer in all areas. Plant height at the later stage of growth, lodging and yield were not significantly different between plots applied with swine liquid manure and those with chemical fertilizer in three areas (Baeksu, Gunnam, Beopseong). Plant height at the later stage of growth, as well as lodging were higher in SLM plots than in chemically fertilized plots in Yeonggwang and Yeomsan. However, grain yield was lower in SLM plots than in chemically fertilized plots in these areas. Soil organic matter content and exchangeable cations increased in the swine liquid manure applied plots. Moreover, heavy metal content did not increase in the plots treated with swine liquid manure. Further research to determine the suitable rate of swine liquid manure is needed to reduce lodging damage and to increase the yield and quality of rice.

Management Guidelines and the Structure of Vegetation in Natural Monuments Koelreuteria Paniculata Community (천연기념물 모감주나무군락의 식생구조와 관리제언)

  • Shin, Byung Chul;Lee, Won Ho;Kim, Hyo Jeong;Hong, Jeum Kyu
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.100-117
    • /
    • 2010
  • This study analyzed vegetation structure of natural monuments Koelreuteria paniculata community in search of a conservation and management plan. Plant sociological analysis of Koelreuteria paniculata community indicates that it can be classified into Achyranthes japonica subcommunity and Rhodotypos scandens subcommunity and Trachelospermum asiaticum var. intermedium subcommunity. While Koelreuteria paniculata community of Ahnmyeondo is composed of sub tree layer and herb layer, those of Pohang and Wando are composed of tree layer, Sub tree layer, shrub layer, herb layer. The results of tree vitality analysis showed that those in Ahnmyeondo appeared to be relatively low when compared to those in Pohang and Wando-gun. This can be understood in two different aspects: disease and insects vulnerability due to a relatively simple structure and lack of competitive species, and decreased vitality / natural branch losses due to crown competition arising from high density. The result of soil characteristics analysis showed that soil texture, soil pH, organic matter, $p_2O_5$, exchange positive ion were sufficient for tree growth while total nitrogen was not, so that discretion would be needed for fertilizer application. As there were damages of disease and inscet, but only for 10~15% of the entire area; it still requires consistent preconsideration. The study suggests the management methods for preservation of Koelreuteria paniculata community. First, securing designated areas is necessary in order to minimize environment deterioration due to surrounding development. Especially, for sections with decreased areas, expansion of designated areas through land purchase should also be considered. Second, artificial interference may affect the livestock. Therefore, monitoring of artificial interference is necessary, based on which protection projects must be conducted. Third, from analysis of young plants which influence the maintenance mechanisms of Koelreuteria paniculata community, a decrease compared to the prior year was observed; investigation is needed. Therefore, an active management policy through status examination of livestock such as germination and young plants is necessary.

A Study on the Possibility of Recycling Coir Organic Substrates for using Strawberry Hydroponics Media (토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구)

  • Lee, Gyu-Bin;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kim, Jooh-Yup;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as $4.58dS{\cdot}m^{-1}$. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was $1.48dS{\cdot}m^{-1}$. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.

Location Environment and Vegetation Structure of the Aconitum austrokoreense Habitat (세뿔투구꽃 서식지의 입지환경 및 식생구조)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • Owing to the lack of consistent research on endangered plant species in Korea, there are insufficient data to preservespecies and expand habitats. This study analyzed the preferred habitat and threats to the survival of Aconitum austrokoreense, found on Baekwun Mountain in Gurye-gun, Gwangyang-si, Jeollanam-do Province, and classified as a level two endangered wild plant by the Ministry of Environment, by investigating major environmental factors such as climate, location, soil, and stand structure. By examining five selected sites inhabited by Aconitum austrokoreense on BaekwunMountain, this study found that the habitat had an altitude of 420 to 675 m above sea level and showed a northeast tendency, spreading over a range of inclination angles between 15° and 37°. The average number of plants across the five sites was 156. Site 4 (550 m) had the highest density of 372 plants, with an average height of 0.6 m. The average soil moisture and relative light intensity were 20.48% and 7.34%, respectively. Layer soil was presumed to be sandy loam, characterized by high sand content and good drainage. The habitat had average soil pH of 5.2, average organic matter of 16.46%, average nitrogen of 0.86%, average available phosphate of 11.86 mg/kg, average electrical conductivity of 0.44 dS/m, and average cation exchange capacity of 37.04 cmolc/kg. The total carbon in soil averaged 10.68%. From the analysis of the vegetation structure of sites inhabited by Aconitum austrokoreense, the dominant populations were Pinus koraiensis and Lindera erythrocarpa in Site 1, Magnolia obovata and Carpinus laxiflora in Site 2, Zelkova serrate and Quercus variabilis in Site 3, Staphylea bumalda and Lindera erythrocarpa in Site 4, and Morus bombycis,Styrax japonicus, and Carpinus laxiflora in Site 5. With most habitats located near trails and sap collection sites of Acer pictum, the species were exposed to artificial damage and interference threats.

Effects of Forage-Rice Cropping Systems on the Growth and Grain Quality of Early Maturing Rice Cultivars and Soil Chemical Properties in Paddy Fields in Southern Korea (사료작물-벼 작부체계가 조생종 벼의 생육과 미질 특성 및 토양의 화학적 특성에 미치는 영향)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.297-306
    • /
    • 2021
  • To select rice (Oryza sativa L.) cultivars suitable for forage-rice double cropping system, the growth and grain quality of four early maturing rice cultivars (Joun, Jopyeong, Haedamssal, and Unkwang), and the chemical properties of soils were investigated under single- (fallow-rice) and forage-rice double-cropping systems in paddy fields in Miryang, southern Korea. The soil where two forage crops [Italian ryegrass (Lolium multiflorum Lam.) and oat (Avena sativa L.)] were cultivated during winter had a slightly lower pH; an increase in total nitrogen (T-N), K, Ca, and Na contents; and a slight decrease in organic matter and available P2O5 contents, compared with the soil fallowed during winter. This shows that the chemical properties of paddy soils can be improved by winter forage cropping. At the heading stage, the culm length, panicle length, panicle number, and leaf color of all cultivars, except for Haedamssal, were generally higher under double-cropping than under single-cropping. For Haedamssal, the culm length and leaf color did not differ between the cropping systems, but the panicle length was slightly shortened and its panicle number increased under double-cropping. After harvest, the yield of milled rice decreased for all cultivars except Haedamssal, but increased in Haedamssal under double-cropping. The head rice rate was slightly higher under double cropping, particularly in Jopyeong and Haedamssal, than under single-cropping. The protein content of milled rice under double cropping was higher and its amylose content was similar or slightly lower compared to those of rice under single cropping, resulting in decreased Toyo values for rice under double-cropping. The pasting temperature did not differ significantly between the cropping systems. However, Haedamssal had a low pasting temperature but a high Toyo value under double cropping, compared to the other three cultivars, suggesting that its palatability is relatively high. Furthermore, panicle number increased and milled rice yield did not decrease, even under double cropping. Therefore, Haedamssal seems to be the best cultivar for paddy-based double cropping with forage crops.

Correlation analysis between growth characteristics and ginsenoside contents of 4-year-old wild-simulated ginseng (Panax ginseng C.A. Meyer) with different cultivation sites (지역별 4년근 산양삼의 생육특성 및 진세노사이드 함량 간의 상관관계 분석)

  • Yeong-Bae Yun;Jeong-Hoon Huh;Dae-Hui Jeong;Jiah Kim;Yurry Um
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.253-259
    • /
    • 2022
  • The aim of this study was to investigate the correlation between growth characteristics and ginsenoside contents of 4-year-old wild-simulated ginseng cultivated in different regions. Most of the soil properties except for available phosphate showed significantly higher in Pyeongchang than in other cultivation sites. The growth characteristics except for root length and number of rootlets showed significantly higher in Pyeongchang than in other cultivation sites. In the case of 8 ginsenoside contents, the content of F2-AS was significantly higher in Muju than in other cultivation sites and the content of F1 in Yeongju was significantly high. In Yeongwol, the contents of Rb1 and Re-p were significantly high and the content of Ro in Pyeongchang showed significantly higher than in other cultivation sites. Root length and soil pH did not show a significant correlation with any soil properties and growth characteristics of wild-simulated ginseng, respectively. Most of the growth characteristics showed significantly positive correlations with electrical conductivity, organic matter content, total nitrogen content, exchangeable cations (K+, Ca2+, Mg2+), and cation exchange capacity. Rb1 and Re-p showed significantly negative correlations with most of the growth characteristics of wild-simulated ginseng except for the number of rootlets. Ro showed a significantly positive correlation with stem length, number of leaflets per stem, leaflet length, leaflet width, and root diameter. The results of this study probably will help to provide useful information on the establish a quality standard by investigate correlation analysis between growth characteristics and ginsenoside content of 4-year-old wild-simulated ginseng.