• Title/Summary/Keyword: organic nitrogen

Search Result 2,528, Processing Time 0.033 seconds

Effect of particle size and scanning cup type for near infrared reflection on the soil property measurement

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • The purpose of this research was to find out suitable soil sample preparation and sample holding tools for NIR reflection radiation for estimating soil components. NIR reflectance was scanned at 2nm intervals from 1,100 to 2,500nm with an InfraAlyzer 500(Bran+Luebbe Co.). Coarse(2.0mm) and fine(0.5mm) soil sample and various sample holding tools were used to obtain mean diffuse reflection of the soil for the calibration and validation of the calibration set in estimating moisture, organic matter and total nitrogen of the soils. Multiple linear regression was used to obtain the best correlation of NIR spectroscopy method. Correlation of NIR spectroscopy method. Correlation of NIR spectra for finely and coarsely sized soil did not show much difference. The standard errors of prediction(SE) using different types of sample holding tools for organic matter, total nitrogen and soil moisture were better than 0.765, 0.041 and 0.63% respectively. From the results it can be concluded that NIR spectroscopy with flow type cell could be used as a fast routine testing method in quantitative determination of organic matter, total nitrogen and soil moisture.

Differences in Biogeochemical Properties and Microbial Activities in Stream Segments with Changes in Land-use Type

  • Kim, Jinhyun;Jang, Inyoung;Lee, Hyunjin;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2015
  • Changes in land-use type can affect soil and water properties in stream ecosystems. This study examined the effects of different land-use types on biogeochemical properties and microbial activities of a stream. We collected water and sediment samples in a stream at three different sites surrounded by varying land-use types; a forest, a radish field and a rice paddy. Nitrogen contents, such as nitrate, nitrite and total nitrogen in the stream water body, showed significant differences among the sampling sites. The highest nitrogen values were recorded at the site surrounded by cropland, as fertilizer runoff impacted the stream. Soil organic matter content in the sediment showed significant differences among sites, with the highest content exhibited at the forest mouth site. These differences might be due to the organic matter in surrounding terrestrial ecosystems. Microbial activities determined by extracellular enzyme activities showed similar values throughout all sites in the water body; however, the activities in the sediments exhibited the highest values near the forest site and mirrored the soil organic matter content values. From these results, we conclude that different land-use types are important factors affecting water and sediment properties in stream ecosystems.

Removal Characteristic of Ammonia Nitrogen and Behavior of Nitrogen in Synthetic Wastewater Using Leclercia Adecarboxylata (Leclercia Adecarboxylata를 이용한 합성폐수의 암모니아성질소 제거특성 및 질소거동)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.460-465
    • /
    • 2007
  • In this study, the removal characteristic of ammonia nitrogen and behavior of nitrogen was investigated using Leclercia adecarboxylata, which was derived from the culture contaminated by ammonia nitrogen of high concentration. The method of ammonia nitrogen removal was not biological nitrification and denitrification but elimination of nutrient salt with internal synthesis of microorganisms which use ammonia nitrogen as substrate. L. adecarboxylata(one of ammonia synthesis microorganisms) was highly activated and showed the most high removal efficiency in free salt condition but the removal efficiency decreased badly in salt concentration of more than 4%. About 80 mg/L of $NH_3-N$ was mostly removed within 20 hours and 500 mg/L of $NH_3-N$ showed less then removal efficiency of 50% because carbon source was not enough. However, ammonium nitrogen concentration was decreased again when the carbon source was inserted additionally thus, ammonium nitrogen removal efficiency by L. adecarboxylata, was related to amount of carbon source. pH decreased from 8.0 to 6.36 according to growth of L. adecarboxylata. Concentration of nitrite nitrogen and nitrate nitrogen did not increase and TKN concentration showed no variation while ammonia nitrogen was removed by L. adecarboxylata. In addition to, when content of protein in organic nitrogen was measured, protein was not detected at the beginning of microorganism synthesis but protein of 193.1 mg/L was detected after 48 hours. Hence, ammonium nitrogen was not decomposed as nitrate nitrogen and nitrite nitrogen but synthesized by L. adecarboxylata, which has excellent ability of nitrogen synthesis and can threat ammonia nitrogen of high concentration in wastewater.

Organic Matter in the Sediments of Youngsan River Estuary : Distribution and Sources (영산강 하구역 퇴적물의 유기물 분포와 기원)

  • Woo, Jun-Sik;Choi, Heeseon;Lee, Hyo-Jin;Kim, Tae-Ha
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1375-1383
    • /
    • 2014
  • Total organic carbon(TOC), Total nitrogen(TN), and carbon and nitrogen stable isotopes were measured in the sediment and suspended parties in fresh lake water and saline estuarine water to determine the sources of Particulate organic matter(POM) in the sediments of the Youngsan river estuary. POM in the freshwater discharge water was mostly phytoplankton origin with little trace of terrestrial plants. POM from phytoplankton blooms formed in estuarine water in response to the nutrient enriched freshwater discharges was the most important sources of POM in the sediment near the dike, comprising more than 40% of the total organic matter. POM from freshwater phytoplankton and oceanic phytoplankton were also important sources of the sediment POM, and their contributions varied with the distances from the dike. Contribution of freshwater phytoplankton to sediment POM decreased from the dike to the outside of the estuary.

Distributions and Sources of Dissolved Organic Matter in Seawaters Surrounding Aqua Farms on the Haengwon-ri in Jeju-Island in Summer 2015 (2015년 하계 제주 행원리 일대 양식장주변 해수 중 용존유기물 분포와 기원)

  • Kim, Jeonghyun;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • Concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), dissolved organic phosphate (DOP), and colored dissolved organic matter (CDOM) were measured in the coastal sea off inland aqua farms in northeastern Jeju Island in summer 2015. The highest concentrations of DOC, DON, and DOP were revealed in the surface water off Hado-ri where the lowest salinity conditions prevailed (31.6). The concentrations of DOC, DON, and DOP in the surface water were lower in the inner stations (SH1-1, 1-2, and 1-3) near the aqua farms of the Haengwon-ri than in the outer stations. The concentrations of DOC, DON, and DOP negatively correlated with salinity. These results indicate that the contribution of dissolved organic matter (DOM) from the aqua farms seems to be not significant. On the other hand, the higher concentrations of DON and DOP in the inner stations of Hado-ri (HD 1-1) seem to be attributed to excrement of migrating birds. The three components of CDOM (T, M, and C peaks) showed no relationship with salinity, perhaps due to various in situ productions by marine organisms and decomposition by ultraviolet radiation. The observed lower C:M ratio, an indicator of terrestrial source, and the higher biological index (BIX) of CDOM in the station off Hado-ri indicate that DOM is produced mainly by biological activity. Based on the higher humification index (HIX) of CDOM and the higher DOC:DON ratio off Haengwon-ri, refractory DOM in the inland aqua farms is likely transported to the coastal sea.

The Effect of Organic Materials Application on Soil Chemical Properties and Yield of Corn in Organic Upland Soil (유기자원 연용이 유기농 옥수수 밭토양의 화학성과 옥수수 수량에 미치는 영향)

  • Kong, Minjae;An, Philgyun;Jung, Junga;Lee, Chorong;Lee, Sangmin;An, Nanhee
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1239-1248
    • /
    • 2020
  • This study performed to conduct a test to increase the amount of appropriate organic matter input to organic upland soil, soil fertility, and its effect on the chemical changes and yield of corn in soil due to organic use. The pH level of the T1, T5, and T6 treatment zones where livestock excreta was used was raised to 6.0-6.5, the optimal range of the soil in Korea, and it was confirmed that the pH value was appropriate. Electrical Conductivity (EC), organic content (OM), and total nitrogen (T-N) were also identified as a trend of continuous increase. The quantity of corn gradually increased from 74.1% to 96.4% over the four-year period with the use of organic materials compared to the beginning of the test, and the utilization efficiency of nitrogen has also increased. The results of the study were found to have been able to examine the increase in quantity and changes in soil chemistry through crop cultivation using organic materials such as natural materials, green manure crops, and livestock manure compost, and it is also believed that the changes due to various factors such as soil environment, soil microbes, and climate conditions need to be made through continuous research.

On the Distribution of Organic Matter in the Nearshore Surface Sediment of Korea (한국연안 표층퇴적물중의 유기물함량 분포특성)

  • KANG Chang-Keun;LEE Pil-Yong;PARK Joo-Suck;KIM Pyoung-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.557-566
    • /
    • 1993
  • For the purpose of examining the distribution of organic matter in the nearshore surface sediments of Korea, organic carbon, nitrogen, ignition loss, chemical oxygen demand, phaeopigment and total sulphide for 117 surface sediments were measured and analyzed in February, 1993. Organic carbon and nitrogen contents ranged from $0.03\%\;to\;5.41\%$ (average $1.08\%$) and from $0.01\%\;to\;0.44\%$ (average $0.18\%$), respectively. The highest contents with the average $2.18\%$ organic carbon and $0.23\%$ nitrogen were found in the eastern part of the southern coast, while the lowest contents with the average $0.17\%$ organic carbon and $0.03\%$ nitrogen in Kunsan coastal area covering from Kum river to Dongjin river. The principal component analysis using all measured data distinguished the western coast from the eastern part of the southern coast clearly according to organic matter contents, that is, the degree of eutrophication in the sediments. Pusan harbor and the mouth of Masan Bay had high C/N ratio that might be resulted from the input of terrestrial sewage and industrial wastewater. A high concentration of total sulphide distinguished the surface sediment of Masan Bay from that of other areas.

  • PDF

Determination of the Origin of Particulate Organic Matter at the Estuary of Youngsan River using Stable Isotope Ratios (${\delta}^{13}C$, ${\delta}^{15}N$) (탄소 및 질소 안정동위원소 비를 이용한 영산강하구역 유기물 기원 추정 연구)

  • Lee, Yeon-Jung;Jeong, Byung-Kwan;Shin, Yong-Sik;Kim, Sung-Hwan;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.175-184
    • /
    • 2013
  • Organic carbon and total nitrogen stable isotope ratios of suspended materials were determined at 3 stations (from Mongtan Bridge to Youngsan river estuary barrage) (n=6, each) from November 2008 to August 2009, in order to understand the origin of particulate organic matter at the Estuary of Youngsan River. Allochthonous organic matter, ammonia-N and silicate were increased after heavy rain (in August). Carbon isotope ratios were significantly different between stations in November and August, and it was possible to determine the origin of organic matter. The heavier nitrogen isotope ratios, as well as higher phosphate concentrations, were found in November than other sampling times. Livestock wastewater and farmland input was likely the main causes of these high values. In addition, YS3 station, the nearest site to estuary barrage, appears to be affected by a substantial amount of livestock wastewater and farmland input, considering that nitrogen isotope ratios were heavier than those at the upper sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the determination of organic matter origin in aquatic environments.

Nitrogen Transformation in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation (옥수수 재배 시 퇴비 및 바이오차 시용 토양에서 질소 이동 동태)

  • Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • This study were conducted to evaluate the N mineralization and nitrification rates and to estimate the losses of total carbon and nitrogen by runoff water in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil texture used in this study was clay loam, and application rates of chemical fertilizer and bio-char were $230-107-190kg\;ha^{-1}$($N-P_2O_5-K_2O$) as recommended amount after soil test and 0.2% to soil weight. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of cow compost, pig compost, swine digestate from aerobic digestion system, and their bio-char cooperation. For N mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char as compared to the only application plots of different organic composts except for 47 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For loss of total carbon by run-off water, it was ranged from 1.5 to $3.0kg\;ha^{-1}$ in the different organic compost treatment plots. However, Loss of total carbon with bio-char could be reduced at $0.4kg\;ha^{-1}$ in PC treatment plot. Also, with application of bio-char, total nitrogen was estimated to be reduced at 4.2 (15.1%) and $3.8(11.8%)kg\;ha^{-1}$ in application plots of pig compost and swine aerobic digestate, respectively.

Nutrients and Suspended Organic Particulates in the Estuary of NakDong River (낙동강 하구수역의 영양염류와 유기현탁물질)

  • Choe, Sang;Chung Tai Wha
    • 한국해양학회지
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 1972
  • Seasonal changes in nutrients and suspended organic particulates were measured in the estuary of Nak-dong River in relation to the black laver bed. Monthly measurements of water temperature, pH, dissolved oxygen, nutrients ( $NH_4$-N, $NO_2$-N, $NO_3$\-N, $PO_4$-P and $SiO_2$-Si) and organic suspended particulates (organic carbon and nitrogen) were determined at five stations from February through December, 1970. PH varied 7.6-8.4 with an average of 8.0, and percent saturation of dissolved oxygen were 71-147% with an average of 100.8%. Studies gave evidence that Nak-dong River estuary is strongly enriched with nutrients. Concentrations of nutrients were: 0.13-12.54 ${\mu}g$-atoms/${\iota}$ (averaging 1.63 ${\mu}g$-atoms/${\iota}$) for $NH_4-N$, 0.12-2.09 ${\mu}g$-atoms/${\iota}$ (averaging 0.71 ${\mu}g$-atoms/${\iota}$) for $NO_2-N$, 3.46-56.79 ${\mu}g$-atoms/${\iota}$ (averaging 21.54 ${\mu}g$-atoms/${\iota}$) for $NO_3$-N, 4.04-57.90 ${\mu}g$-atoms/${\iota}$ (averaging 23.79 ${\mu}g$-atoms/${\iota}$) for total soluble nitrogen, 0.18-5.05 ${\mu}g$-atoms/${\iota}$ (averaging 0.96 ${\mu}g$-atoms/${\iota}$) for $PO_4$-P, and 18.33-133.29 ${\mu}g$-atoms/${\iota}$ (averaging 71.57 ${\mu}g$-atoms/${\iota}$) for $SiO_2$-Si, respectively. These nutrient levels were considerably higher compare with other productive laver beds of Wan do and Pyung-il Do in Korea or Ise Bay in Japan. Concentrations of suspended organic particulates varied 55-648 ${\mu}g/{\iota}$ (averaging 392 ${\mu}g/{\iota}$) with organic carbon, 30-155 ${\mu}g/{\iota}$ (averaging 92 ${\mu}g/{\iota}$) with organic nitrogen, and its carbon-nitrogen ratios were varied within 1.5-8.4 with an average of 4.6.

  • PDF