• Title/Summary/Keyword: organic nitrogen

Search Result 2,528, Processing Time 0.027 seconds

Analysis on the Characteristics of Water Quality in Prearranged Saemangeum Area (새만금 예정수역의 수질특성 분석)

  • Lee, Gwang-Ya;Eom, Myeong-Cheol;Jo, Jae-Won;Jeong, Hae-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • Hourly monitoring data from Saemangeum estuary, which is expected to become freshwater, was analyzed to evaluate the water quality characteristics. Higher algal growth at spring season than winter influenced the high ratio of organic nitrogen to total nitrogen and concentration of chemical oxygen demand (COD). About 87.9% and 59.7% of organic nitrogen was observed at winter season and spring season, respectively. Daily salinity analysis at the mouth of two main rivers demonstrated that the Dongjin in river was more influenced by tidal effect and showed higher variation than the Mankyung river. The ratio of nitrogen to phosphorus (N/P ratio) was different with site (estuary versus sea area) and season (winter versus spring) remarkably. The N/P ratio was highest (32.74 ∼ 43.93) at estuary in winter and was lowest (1.78 ∼ 3.06) at sea in spring. The high N/P ratio at estuary area implies that phosphorus can be the limiting nutrient factor for algal growth as in general freshwater river, therefore, water quality management practice considering river characteristics rather might be needed in the Saemangeum estuary. The Saemangeum project is nationally recognized for its environmental issues, and especially water quality concern is a critical factor to make policy decision and further assessment with continued monitoring is strongly recommended.

Growth of Korean Kimchi Cabbage and Nitrogen Availability of Fertilizer in Organic Farming with Poultry Manure Compost and Natural Mineral Materials in Highland Rainshelter Cultivation (계분퇴비와 천연무기질 자재를 활용한 고랭지배추 비가림 유기재배 시 시용질소의 이용률과 배추의 생육)

  • Kim, Ki-Deog;Kwon, Yeong-Seok;Yoo, Dong-Lim;Lee, Jong-Nam;Seo, Jong-Taek
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.1
    • /
    • pp.69-78
    • /
    • 2013
  • This study was carried out to evaluate nitrogen availability of applied fertilizer and to investigate yield and growth of Korean kimchi cabbage as affected by amount of fertilizer and soil fertility in organic farming applied various fertilizers in rainshelter. The head weight of Korean kimchi cabbage cultured in infertile soil (sand loam) with no amendments was very low. and that in fertile soil (clay loam) was higher than in infertile soil (sand loam). The head weight of Korean kimchi cabbage as affected by amount of fertilizer was more variable in infertile soil (sand loam) than in fertile soil (clay loam). Nitrogen availability of applied fertilizer by Korean kimchi cabbage was lower in fertile soil (clay loam) than in infertile soil (sand loam) and the lower that was, the more fertilizer applied. By application of poultry manure compost 20Mg ha-1 and natural mineral materials such as guano, phosphate rock, and potassium magnesium rock equal to amount of fertilizer recommended in conventional farming, the yield of Korean kimchi cabbage in infertile soil (sand loam) with 1% organic matter came up to 90% of the yield in fertile soil (clay loam) with 6% organic matter. Therefore natural mineral materials such as guano for N source, phosphate rock for P source, and potassium magnesium rock for K source may be able to use as environmental-friendly fertilizers in organic Korean kimchi cabbage production in highland.

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient use Efficiency in Cabbage (토양검정에 의한 유기자원 시비처방이 양배추의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • BACKGROUND: In this study, in order to verify the effects of supplemented organic amendment fertilizers recommended by the soil testing on cabbages, we used various amounts of organic amendment fertilizers. The amount of organic amendment fertilizers was decided by calculating each ratio of inorganic nitrogen, phosphorus, and potassium based on the recommended fertilizer composition. METHODS AND RESULTS: The cabbages subjected to treatments 1 and 2 showed similar or greater leaf colors (SPAD values), head heights, head widths, head weight, soil organic matter content, nitrate-nitrogen level, and conductivity after harvest, when compared with cabbages treated with chemical fertilizers. The phosphorus and potassium fixation in the soil were higher in the plot where cabbages were treated with chemical fertilizers, and the nutrient use efficiency was greater in the plots with organic amendments and mineral addition. CONCLUSION: The treatments 1 and 2 that were supplemented with 180-200% of nitrogen, 100-130% of phosphorus, and 185-250% of potassium in comparison to chemical fertilizers, applied by the inorganic ratios of nitrogen, phosphorus, and potassium can be used as organic amendment fertilizers for cabbages.

Effects of different nitrogen doses and cultivars on fermentation quality and nutritive value of Italian ryegrass (Lolium multiflorum Lam.) silages

  • Ertekin, Ibrahim;Atis, Ibrahim;Aygun, Yusuf Ziya;Yilmaz, Saban;Kizilsimsek, Mustafa
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.39-46
    • /
    • 2022
  • Objective: The fermentation profile and silage quality of 3 Italian ryegrass (Lolium multiflorum Lam.) cultivars (cvs. Devis, Hellen, and Trinova) treated with 5 nitrogen doses (0, 50, 100, 150, and 200 kg/ha) were evaluated. Methods: The experiment was laid out in split plot in randomized complete block design with three replications. Annual ryegrass cultivars used in this study have been commonly grown in Turkey. Nitrogen doses were set in main plot and cultivars in split plot in the field. Plants were harvested at full-flowering stage with dry matter content about 220 g/kg for first cutting and 260 g/kg for second cutting. Harvested plants were chopped theoretically into 2 to 3 cm lengths for ensiling. Chopped fresh materials were ensilaged by compressing in 2 L plastic jars about 3±0.1 kg. Results: Effects of N doses on dry matter, neutral detergent fiber, acid detergent fiber, dry matter digestibility, relative feed value, crude protein, pH, ammonia nitrogen, lactic acid, acetic acid, and lactic acid/acetic acid were statistically significant while water soluble carbohydrate, ash and organic matter were not statistically different. Ammonia nitrogen, crude protein, ash, organic matter, lactic acid, and lactic acid/acetic acid were affected by cultivars, but the other parameters were not. Increasing nitrogen applications positively affected the chemical composition of annual ryegrass silage. The significant increase in protein content was remarkable, however, silage fermentation properties were adversely affected by the increasing nitrogen dose. Conclusion: It can be recommended 150 kg/ha nitrogen dose for annual ryegrass harvested at full blooming stage. Even though the silage fermentation properties of the used cultivars were similar, cv. Devis gave better results than the others in terms of silage pH and relative feed value.

The Energy Flow and Mineral Cycles in a Zoysia japonica and a Miscanthus sinensis Ecosystem on Mt. Kwanak 3. The Cycles of Nitrogen (관악산의 잔디와 억새 생태계에 있어서 에너지의 흐름과 무기물의 순환 3.질소의 순환)

  • 장남기;김정석;강경미
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.265-273
    • /
    • 1995
  • This investigation is carried out to clarify the cycles of nitrogen in the grassland ecosystems of Zoysia japonica and a Miscanthus sinensis on Mt. Kwanak. The hasic differential equation for the rate of change of nitrogen storage is illustrated hy huild-up and turnover of organic nitrogen, particularly in the ecosystems. The turnover velocity fractions of nitrogen for the Z. japonica and M .sinensis grasslands were k= 0. 181 and k=0. 166, respectively. The times required to reach 50, 95 and 99 percent of the steady state levels and turnover values of nitrogen on the grassland floors were 3.85, 16.67 and 27.78 years in the Z japonica grassland and 4.08, 17.65 and 29.41 years in the M sinensis grassland. The amount of annual cycles of nitrogen are 560.2 g /$m^2$ in the Z.japonica grassland and 654.1 g /$m^2$ in the M. sinensis grassland. Key words : Zsysia japonica Alisca nthus sinensis, Mt. Kivanak, Nitrogen cycle.

  • PDF

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient Use Efficiency in Potato (토양검정에 의한 유기자원 시비처방이 감자의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.436-446
    • /
    • 2020
  • In this study, we verified the effects of organic amendment application based on soil testing in potato cultivation. The application rate of organic amendments was determined based on the inorganicization rate of nitrogen, phosphoric acid, and potassium in the organic amendments. There was no significant difference in the length, stalk number, stalk diameter, and leaf color of potato plants under organic amendment application compared with those under chemical fertilization. The quantity of potato tubers and yield of marketable tubers under organic amendment application were higher than those under chemical fertilization. The top fresh weight and top-to-root ratio were the highest under organic amendment application, followed by those under chemical fertilization and the control. The inorganic nitrogen content in the leaves and stems of potato plants was the highest under chemical fertilization. There was no difference in the phosphoric acid content between the potatoes under chemical fertilization and those under organic amendment application. The potassium content in potatoes was higher under chemical fertilization than that under organic amendment application. While the change trend of inorganic nitrogen content in the roots was similar to that in the leaves and stems, the potatoes under organic amendment application, with the highest yield, showed the highest dry weight. The tuber weight showed a positive correlation with plant length, stalk number, and stalk diameter. The higher the weight of the tuber, the higher the weight of the marketable tuber, and the higher the top fresh weight, the higher the yield. Therefore, to increase yield, it is necessary to supply nutrients to improve the top fresh weight to the optimal level. There was no difference in the utilization efficiency of nitrogen and potassium between the potatoes under chemical fertilization and those under organic amendment application. The utilization efficiency of phosphoric acid was increased by 0.1% in potatoes under organic amendment application compared with that under other treatments. Regarding soil chemistry after harvest, the soils under organic amendment application showed a higher electrical conductivity and higher nitrogen and phosphoric acid content than those under other treatments. Therefore, the organic amendment method used in this study can be an alternative to chemical fertilization. It is also advantageous for the cultivation of subsequent crops in potato fields.

Recommendation of Optimum Amount of Fertilizer Nitrogen Based on Soil Organic Matter for Chinese Cabbage and Cabbage in Volcanic Ash Soils of Cheju Island (제주도 화산회토양의 배추와 양배추에 대한 질소의 시비추천식 설정)

  • Song, Yo-Sung;Kwak, Han-Kang;Yeon, Byeong-Yeal;Lee, Choon-Soo;Yoon, Jung-Hui;Moon, Doo-Young;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • To find out the optimum nitrogen fertilization levels for the leafy vegetables in volcanic ash soils of Cheju island, fertilization effects on chinese cabbage chinese and cabbage were investigated through pot and field experiments. In pot experiment conducted with two volcanic ash soils of Cheju island, optimum rates of nitrogen fertilizer was ranged from 294 to $331kg\;ha^{-1}$ for chinese cabbage. At field experiment with one volcanic soil, the optimum N fertilizer was $331kg\;ha^{-1}$. On the basis of soil organic matters, fertilizer recommendation formula for cabbage, could be established by using 1.03 of comparison factors (F) compared with chinese cabbage : y=344.54-0.285x for chines cabbage, y= 354.88-0.294x for cabbage, where y is the recommendation amount of nitrogen fertilizer with x g $kg^{-1}$ of organic matter in soil. Actual optimum rate of nitrogen fertilizer for chinese cabbage under field condition was much more similar to the value caluculated by the revised nitrogen recommendation formula than the amount of nitrogen fertilizer recommended by the current formula in volcanic ash soil.

A Study on the Biological Nitrogen Removal of the Chemical Fertilizer Wastewater Using Jet Loop Reactor (Jet Loop 반응기를 이용한 화학비료폐수의 생물학적 질소제거 연구)

  • Seo Jong-Hwan;Lee Chul-Seung
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2005
  • This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above $86\%$, and the concentration of organic nitrogen was influent wastewater 126mg/L and of effluent wastewater 16.4mg/L, respectively. The nitrification above $90\%$ was acquired to TKN volumetric loading below $0.5\;kgTKN/m^3{\cdot}d$, TKN sludge loading below $0.1\;kgTKN/kgVSS{\cdot}d$ and SRT over 8days. The nitrification efficiency was $90\%$ or more and the maximum specific nitrification rate was $184.8\;mgTKN/L{\cdot}hr$. The denitrification rate was above $95\%$ and the concentration of $NO_3-N$ was below 20mg/L. This case was required to $3\;kgCH_3OH/kgNO_3-N$, and the effluent concentration of $NO_3^--N$ was below 20mg/L at $NO_3^--N$ volumetric loading below $0.7\;kgNO_3^--N/m^3{\cdot}d$ and v sludge loading below $0.12\;kgNO_3^-N/kgVSS{\cdot}d$. At this case, the maximum sludge production was $0.83\;kgTS/kgT-N_{re}$ and the specific denitrfication rate was $5.5\;mgNO_3-N/gVSS{\cdot}h$.

Selection of organic Nitrogen Source and Optimization of Culture Conditions for the Production of Arachidonic Acid from Mortierella alpina (Mortierella alpina를 이용한 아라키돈산의 생산에서 유기질소원의 선정과 배양 조건의 최적화)

  • 유연우;하석진;박장서
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.78-82
    • /
    • 2004
  • Experiments were carried out to select an organic nitrogen source and optimize the culture conditions for the production of arachidonic acid by Mortierella alpina DSA-12. Corn steep powder(CSP) was selected as an organic nitrogen source based on arachidonic acid production and raw material price. The optimum C/N ratio was in the range of 15 to 17 with the medium containing glucose as carbon source and CSP as nitrogen source. The optimum culture conditions for arachidonic acid production showed 500 rpm agitation and 25$^{\circ}C$ culture temperature at 0.5 vvm aeration. Under the optimum conditions, the concentration of cell, total lipid and arachidonic acid were 21.8 g/L, 10.2 g/L and 3.70 g/L, respectively, from 50 g/L glucose and 18 g/L CSP. In the 500 L fermenter with 0.5 vvm aeration and 200 rpm agitation, the concentration of cell, total lipid and arachidonic acid were 19.8 g/L, 9.1 g/L and 3.67 g/L, respectively, from 50 g/L glucose and 18 g/L CSP. This result showed that an arachidonic acid production could be possible with a bench-scale fermenter using corn steep powder as a nitrogen source.

Nitrogen Removal in Fluidized Bed and Hybrid Reactor using Porous Media (다공성 담체를 이용한 유동상 및 하이브리드 반응기에서의 질소제거)

  • Jun, Byong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.542-548
    • /
    • 2005
  • A fluidized bed reactor containing porous media has been known to be effective for nitrogen and organic matters removal in wastewater. The porous media which attached microbes plays important roles in simultaneous nitrification/denitrification (SND) due to coexistence of oxic, anaerobic and anoxic zone. For SND reaction, oxygen and organic substrates should be effectively diffused from wastewater into the intra-carrier zone. However, the overgrowth heterotrophic microbes at the surface of porous media may restrict from substrates diffusion. From these viewpoints, the existence and effect of heterotrophic bacteria at surface of porous media might be the key point for nitrogen removal. A porous media-membrane hybrid process was found to have improved nitrogen removal efficiency, due to stimulated denitrification as well as nitrification. Microelectrode studies revealed that although intra-media denitrification rate in a conventional fluidized bed was limited by organic carbon, this limitation was reduced in the hybrid process, resulting in the increased denitrification rate from 0.5 to $4.2\; mgNO_3-N/L/hr$.