• Title/Summary/Keyword: organic matter pollution

Search Result 272, Processing Time 0.034 seconds

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

Pollution of Heavy Metals and Sedimentation Rate in the Sediments of Suyeong Bay, Pusan (수영만 퇴적물의 퇴적속도와 중금속 오염)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.643-658
    • /
    • 1994
  • The sedimentary records of anthropogenic metal loads in the Suyeong Bay, Pusan were determined by combining the Pb-210 dating technique with the measurements of heavy metals in the sediment cores. The sedimentation rates of sediment particles ranged from $0.12\;to\;0.20\;g/m^2/yr\;or\;2.4{\sim}4.0\;mm/yr$ in accumulation rates. The lowest sedimentation rate was observed at station S3 which was characterized by a bottom with relatively low organic matter contents(e.g. TIL and TOC). Heavy metals showed generally higher concentrations at station S1 and S2 near the mouth of the Suyeong River than at station S3 and the outmost station S4. The contents of copper, lead and zinc in the sediment cores especially from station S1 and S2 began to increase around 1930, and were at their highest levels in the $1960{\sim}1970$ period as a result of increasing industrial activities. Concentrations of these heavy metals have slightly decreased since 1970, probably due to regulation of pollution discharge. The natural background levels of copper, lead and zinc in the sediments of this bay ranged $18{\pm}4ppm,\;28{\pm}6ppm\;and\;74{\pm}9ppm$, respectively, by averaging the contents in the sediment depths corresponding to periods between about 1900 and 1920 at the four stations. The total amounts of anthropogenic loads deposited in the sediments since about 1930 were estimated to be $9{\sim}291{mu}g/cm^2$ for lead, $165{\sim}1122{mu}g/cm^2$ for zinc and $20{\sim}208{mu}g/cm^2$ for copper. These values were remarkably high at stations S1 and S2 relative to the other two stations. At stations S1 and S2, the anthropogenic loads of lead, copper and zinc constituted $29{\sim}30\%,\;32{\sim}42\%\;and\;28{\sim}35\%$ of the total sedimentary inventories at the present day, respectively. These metal contents have a good correlation(r>0.7) with each other and cadmium measurements also show a positive linear relation with nickel or total organic nitrogen.

  • PDF

Evaluating the Capping Effects of Dredged Materials on the Contaminated Sediment for Remediation and Restoration of the West Sea-Byeong Dumping Site (서해병 폐기물 배출해역 오염퇴적물의 정화·복원을 위한 준설토 피복 효과 평가)

  • Kang, Dong Won;Lee, Kwang Sup;Kim, Young Ryun;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.212-223
    • /
    • 2022
  • For the remediation and restoration of contaminated sediment at the West Sea-Byeong dumping site, dredged materials was dumped in 2013, 2014, 2016, and 2017. The physicochemical properties and benthic fauna in surface sediments of the capping area (5 stations) and natural recovery area (2 stations) were analyzed annually from 2014 to 2020 to evaluate the capping effect of the dredged materials. The natural recovery area had a finer sediment with a mean particle size of 5.91-7.64 Φ, while the sediment in the capping area consisted of coarse-grained particles with a mean particle size of 1.47-3.01 Φ owing to the capping effect of dredged materials. Considering that the contents of organic matters (COD, TOC, and TN) and heavy metals in the capping area are approximately 50 % lower (p<0.05) than that in the natural recovery area, it is judged that there is a capping effect of dredged materials. As a result of analyzing macrobenthic assemblages, the number of species and ecological indices of the capping area were significantly lower than that of the natural recovery area (p<0.05). The number of species and ecological indices at the capping area were increased for the first four years after the capping in 2013 and 2014 and then tended to decrease thereafter. It is presumed that opportunistic species, which have rapid growth and short lifetime, appeared dominantly during the initial phase of capping, and the additory capping in 2016 and 2017 caused re-disturbance in the habitat environment. In the natural recovery and capping areas, Azti's Marine Biotic Index (AMBI) was evaluated as a fine healthy status because it maintained the level of 2nd grades (Good), whereas Benthic Pollution Index (BPI) remained at the 1st and 2nd grade. Therefore, capping of dredged materials for remediation of contaminated sediment in the dumping site has the effect of reducing the pollution level. However, in terms of the benthic ecosystem, it is recommended that the recovery trend should be monitored long-term. Additionally, it is necessary to introduce an adaptive management strategy when expanding the project to remediate the contaminated sediment at the dumping area in the future.

Effects of Applying Livestock Manure on Productivity and Feed Value of Corn and Sorghum$\times$Sorghum Hybrid (가축분뇨시용이 옥수수와 수수$\times$수수교잡종의 생산성 및 사료가치에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.1
    • /
    • pp.115-125
    • /
    • 2008
  • This study was conducted to determine adequate forage crop choice and optimal level of livestock manure, when different types and levels of the livestock manure were applied in corns or sorghum$\times$sorghum hybrids for the production of organic roughages by utilizing livestock manure. For the corn, yields of annual dry matter (DM) and total digestible nutrients (TDN) were highest in N+P+K-applied treatments, showing 17.3 and 11.7 ton/ha, respectively. Treatments applied 100% composted cattle manure (8.9 and 6.1 ton/ha) and 100% cattle slurry (9.4 and 7.5 ton/ ha) in contrast with chemical fertilizer-N had higher yields of DM and TDN than no fertilizer (4.8 and 2.7 ton/ha) and P+K-applied treatments (8.8 and 6.0 ton/ha). Particularly, treatments applied 150% composted cattle manure and 150% cattle slurry were markedly higher, which represented 11.4 and 7.6 ton/ha and 10.3 and 7.3 ton/ha, respectively. Crude protein (CP) contents for corns applied livestock manure ranged from 5.6 to 6.6%, which were significantly (p<0.05) higher than those of no fertilizer (3.9%) and P+K-applied treatments (5.5%). ADF (42.4%) and NDF (58.3%) contents for no fertilizer treatment were significantly (p<0.05) higher than those of other treatments. However, TDN contents were higher for livestock manure treatments than for no and/or chemical fertilizer treatments. In particular, TDN contents of treatments applied 150% composted cattle manure and 150% cattle slurry showed 72.3 and 70.8%, respectively and both treatments were significantly (p<0.05) higher than all of the other treatments. For the sorghum$\times$sorghum hybrid, yields of annual DM and TDN for 100% (12.4 and 7.4 ton/ha) and 150% (13.1 and 7.6 ton/ha) cattle slurry-applied treatments, and N+P+K-applied treatments (12.6 and 7.7 ton/ha) were significantly (p<0.05) higher than those of the others. In the others, 150% composted cattle manure (9.3 and 5.2 ton/ha) had higher annual DM and TDN yields than P+K-applied (8.4 and 4.8 ton/ha) and 100% composted cattle manure treatments (7.4 and 4.2 ton/ha), with no significant difference. Crude protein contents for sorghum$\times$sorghum hybrid applied P+K and cattle slurry were 8.8 and 8.6%, respectively. CP contents for both treatments were significantly higher than those of composted manure ($7.5{\sim}8.3%$) and no fertilizer (4.0%) treatments, but 100% livestock manure treatments had higher CP contents than 150%-applied treatments. ADF and NDF contents for N+P+K and cattle slurry-applied treatments were significantly (p<0.05) lower than the others. However, TDN contents were highest in N+P+K and cattle slurry-applied treatments, showing 61.2 and 58.3 to 59.4%, respectively. These results indicated that application of livestock manure instead of chemical fertilizer to the soil of forage crops might not only improve yields of DM and TDN, but also reduce environmental pollution by producing organic roughages through recycling of livestock manure.

  • PDF

Vertical Distribution of the Heavy Metal in Paddy Soils of Below Part at Guundong Mine in Milyang, Korea (구운동 폐광산 하류 논토양의 토심별 중금속함량)

  • Yun, Eul-Soo;Park, Sung-Hak;Ko, Jee-Yeon;Jung, Ki-Yeol;Park, Ki-Do;Hwang, Jae-Bok;Park, Chang-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.590-595
    • /
    • 2010
  • This study was conducted to investigate form of pollution brought by residual of mine tailing in agricultural land, and get basic information need for environment restoration. Guundong mine was completely restored region by implementation the soil pollution prevention plan. The districts is soils in Guundong mine vicinity the Mahul-ri, Muan-myeon, Miryang city, Gyeongsangnam-do. The nature of soil studied is the Shinra series andesite and mineral deposits which contain brimstone and heavy metals such as gold, silver, copper, lead, and zinc. The residual mine tailing and around agricultural land of heavy metals analyzed with 0.1N HCI solubility. The chemical properties of surface soil in upper part around mining area were pH 4.3-4.4, organic matter 19-21 g $kg^{-1}$, available $P_2O_5$ 85 mg $kg^{-1}$, exchangeable Ca 0.21-0.25 $cmol_c\;kg^{-1}$, exchangeable Mg 0.04 $cmol_c\;kg^{-1}$. The pH, exchangeable Ca, and Mg were increased with soil depth. The contents of 0.1N HCl extractable Cu, Cd, Pb, Cr, and Ni in soil (siteI) which influenced by outflow water from mine tailing were 97, 0.6, 197, 0.28 및 0.12 mg $kg^{-1}$, respectively. The vertical distribution of heavy metals in soil varied considerably among the metals kind. In case of siteI, The content of Cu, Pb, and Cr in soil was highest at surface soil. However, the content of Cd, Zn, Ni, and Mn was high at middle part of soil profile.

Distributions and Pollution History of Heavy Metals in Nakdong Estuary Sediments (낙동강 하구역 퇴적물 중금속의 분포와 오염의 역사 추정)

  • Cho, Jin-Hyung;Park, Nam-Joon;Kim, Kee-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • In order to determine the horizontal and vertical distributions of metals and prospect the recent metal pollution history in Nakdong Estuary, we took surface and core sediments. Maximum value of organic matter occurs at the upstream site located 4 km from Nakdong barrage, and the concentration of trace metals (Zn, Cu, and Pb etc.) decrease seaward in the estuary. The sedimentation rates, based on $^{210}$Pb$_{ex}$ and $^{137}$Cs activities, were 0.34 cm/yr in inside of barrage (core 1) and 0.25 cm/yr in Changrim (core 4). Sediment mixing layer does not exist in core 1, where anoxic condition is known to be prevail. The topmost sediment layer of core 4 (<3.5 cm) is severely mixed. At sites 1 and 4, concentrations of Cu slowly increased during the period of 1920-1970, rapidly increased during 1970-1990, and followed by slight decrease after 1990. Zn contents increased in early 1960s and peaked in 1993, and followed by decrease after 1990s. Pb has increased continuously since early 1970s. At the downstream of the barrage, Cu and Zn have increased in the topmost layer. The trend of increase of Cu is evident after 1950 (11 cm in sediment depth). Overall trend of heavy metal concentration clearly indicates the pollution has been increasing after the construction of the barrage.

  • PDF

Studies on the Composition of Forest Vegetation and the Contents of Polluted Materials in the Needles in an Air Polluted Area (대기오염지역(大氣汚染地域)의 삼림식생구조(森林植生構造)와 엽내오염물질(葉內汚染物質) 함량(含量)에 관한 연구(硏究))

  • Kim, Jong Kab;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.4
    • /
    • pp.360-371
    • /
    • 1989
  • This study was performed to investigate effects of air pollution on the Pinus thunbergii forests in Onsan industrial districts, and environmental factors, contents of soluble sulfur in needles, and composition of sorest vegetation were examined. The results obtained in this study were summarized as follows ; 1. The pH of soils, organic matter and total N were low near the source of air pollutants, and sulfur contents in the soils was high in general. Especially there was significant correlation between the sulfur contents in the soil and pH at 1% level. 2. The contents of soluble sulfur in needles ranged from 0.13% to 0.25% and were generally high, and plot 2 and 3 were the highest of all. 3. In the number of species, 7 species appeared in plot 3 and 20 species in plot 7, and they were low near the source of air pollutants. Total number of individuls, species diversity and evenness increased with in creasing distance from the source of air pollutants. 4. There were significant correlations between the contents of soluble sulfur in needles and the number of species and species diversity at 5%, 1% level, respectively. 5. Importance value of each species was low near the source of air pollutants but Quercus species showed high values in all plots. 6. On these studied plots, Pinus thunbergii, Quercus serrata and smilax china were tolerant, and Rhododendron mucronulatum, Rhododendron yedoense var. poukhanense, Platycarya strobilacea and Lespedeza maritima were sensitive to air pollution.

  • PDF

Evaluation of Aquatic Ecological Characteristics in Sinpyongcheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 신평천 인공습지의 수생태학적 특성 평가)

  • Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Chang, Nam-Ik;Seong, Hwan-Hoo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.400-407
    • /
    • 2011
  • To evaluate the aquatic ecological characteristics in Sinpyongcheon constructed wetlands for treating nonpoint source pollution, the removal rates of nutrients in water, the total amounts of T-N and T-P uptakes by water plants, and chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD, COD, SS, T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were 14%, 6%, 18%, 24%, and 10%, respectively. The maximum amount of T-N uptake by water plants in August was $813mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $1,172mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. The maximum amount of T-P uptake by water plants in August was $247mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $359mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. Organic matter, T-N, and T-P contents in sediments were high in the order of $1^{st}$ bed > $2^{nd}$ bed > $3^{rd}$ bed. Microbial biomass C/N/P ratios in sediments in $1^{st}$, $2^{nd}$, and $3^{rd}$ were 78~110/3~6/1, 73~204/1~6/1, and 106~169/1~6/1, respectively.

The effect of geochemical characteristics and environmental factors on the growth of cultured Arkshell Scapharca broughtonii at several shellfish-farming bays on the South coast of Korea (남해 연안 피조개 (Scapharca broughtonii) 양식장의 환경특성)

  • Choi, Yoon Seok;Jung, Choon-Goo
    • The Korean Journal of Malacology
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2016
  • To assess the effects of environmental factors on the sustainability of cultured ark shell Scapharca broughtonii production, we investigated the habitat characteristics of shellfish-farming bays (Gangjin Bay, Yeoja Bay, Keoje Bay and Deukryang Bay). We measured the physiochemical parameters (temperature, salinity, dissolved oxygen, nutrients, chemical oxygen demand and Chlorophyll a) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several shellfish-farming bays to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain sizes for Gangjin Bay, Yeoja Bay and Keoje Bay were similar, at the ratio of silt and clay in comparison with Deukryang bay of it. The C/N ratio was more than 5.9, reflecting the range arising from the mix of marine organisms and organic matter. The C/S ratio (more than 4.2) showed that the survey area had anoxic or sub-anoxic bottom conditions. The index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. We suggested that the growth of ark shell Scapharca broughtonii in the shellfish-farming bay was effected by the various environmental conditions.