• Title/Summary/Keyword: organic light-emitting device (OLED)

Search Result 302, Processing Time 0.029 seconds

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

Characteristics of blue phosphorescent OLED with partially doped simple structure (부분 도핑을 이용한 단순구조 청색인광 OLED 특성)

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.156-156
    • /
    • 2010
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (OLED) with simplified architectures using blue phosphorescent material. The basis device structure of the blue PHOLED was anode / emitting layer (EML) / electron transport layer (ETL) / cathode. The dopant was partially doped into the host layer for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs.

  • PDF

Improved Performance of Organic Light-Emitting Diodes Using Novel Hole-transporting Materials

  • Kim, Young-Kook;Hwang, Seok-Hwan;Kwak, Yoon-Hyun;Lee, Chang-Ho;Yi, Jeoung-In;Lee, Jong-Hyuk;Kim, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.758-761
    • /
    • 2009
  • The electroluminescent devices with the phenylnaphthyldiamine HTMs as the hole-transporting layer were more efficient than that with the biphenyldiamine HTM 1. Particularly, the life-time of the device IV using HTM 2 is about two times longer than that of the reference device III with HTM 1 within the measured current density, indicating more effective recombination at the emitting layer of device IV.

  • PDF

Top Emitting Organic Light Emitting Diode with a Cr Anode on Flexible Substrate

  • Chung, Sung-Mook;Hwang, Chi-Sun;Lee, Jeong-Ik;KoPark, Sang-hee;Yang, Yong-Suk;Do, Lee-Mi;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1374-1377
    • /
    • 2005
  • Top-emitting organic light-emitting diode (TEOLED) was fabricated on flexible substrate of PES film. Aluminum and Chromium multilayer was used as an anode of TEOLED and the TEOLEDs of Cr(20nm)/Al(100nm)/Cr(20nm)/NPB(60nm)/Alq(60nm)/LiF(1nm)/Al(2nm)/Ag(20nm)/NPB(200nm) has been fabricated on PES film and Si wafer for control device. The TEOLED on PES film which had good anode surface morphology, showed very similar device characteristics to that on Si wafer.

  • PDF

Study on 3-dimension Image Process based on Organic light Emitting Diode (유기발광소자 (Organic Light Emitting Diode)를 이용한 3차원 영상에 대한 연구)

  • Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.497-499
    • /
    • 2005
  • A portable terminal assistant market grows rapidly every year and it requires many change in research on display devices. Among many newly developing methods, OLED(Organic Light Emitting Diode) is considered an advanced flat display device because its excellent characteristics, including high speed response, full color performance, low power consumption and flux of panel. However changes in the market of display shows that the market will require 3-dimensional images, but it is hard for existing 2-dimensional displays to make 3-dimensional images. Therefore we will try to find various methods such as holograms. In this paper, we will show existing flat displays can make 3-dimensional images by applying Lenticular Screen printing techniques on the organic semiconductor display device.

  • PDF

A Study on the Optical and Electrical Properties of the White-light-emitting Organic LED with Two-wavelength using DPVBi/Rubrene Structure (DPVBi/Rubrene 구조를 사용한 2-파장 방식의 백색유기발광소자의 광학적ㆍ전기적 특성에 관한 연구)

  • 오환술;조재영;최성진;강명구;윤석범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.217-222
    • /
    • 2004
  • The white-light-emitting organic LED(OLED) with two-wavelength was fabricated using the DPVBi of blue emitting material and a series of orange color fluorescent dye(Rubrene) by vacuum evaporation processes. The basic structure of white-light-emitting OLED was ITO/NPB(150$\AA$)/DPVBi/Rubrene/BCP(100$\AA$)/Alq$_3$(150$\AA$)/Al(600$\AA$). We analyzed the fabricated device through the changes of the DPVBi and Rubrene layer's thickness. We obtained the white-light-emitting OLED with white color light and the CIE coordinate of the device was (0.29, 0.33) at applied voltage of 13V when the thickness of DPVBi layer was 210$\AA$ and the thickness of Rubrene layer was 180$\AA$. At a current of 100㎃/$\textrm{cm}^2$, the quantum efficiency was 0.35% and at a voltage of 20V, it was 0.405%.

Tandem Organic Light-Emitting Devices Having Increased Power Efficiency

  • Liao, Liang-Sheng;Klubek, Kevin P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1015-1018
    • /
    • 2008
  • Tandem organic light-emitting diodes (OLEDs) do not always improve power efficiency over their conventional OLED counterparts. When a tandem OLED utilizes optimized EL units, increased power efficiency can only be achieved if the intermediate connector in the device has excellent charge injection capability.

  • PDF

RGB White Organic Light Emitting Diode with a Color Control Layer

  • Lee, Jeong-Ik;Chu, Hye-Yong;Yang, Yong-Suk;Lee, Mi-Do;Chung, Sung-Mook;KoPark, Sang-Hee;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1587-1590
    • /
    • 2006
  • Through the engineering of recombination region and energy transfer in organic light emitting device, blue and red light emitting device with good color stability has been successfully obtained. A Color control layer (CCL), which emits green light through the energy transfer from the emission layers, has been introduced into the blue and red light emitting device for RGB white OLED. The RGB white OLED showed the current efficiency of 13 cd/A and the CIE coordinates of (0.33, 0.38) at $1000\;cd/m^2$. The device exhibited very stable spectrum with respect to operating current density and the CIE coordinates varied from (0.34, 0.38) to (0.31, 0.37) for $100-22000\;cd/m^2$.

  • PDF

Highly Efficient Phosphorescence Emitting Materials and Applications to Organic Light Emitting Diode

  • Sung, Lee-Bum;Yun, Jung-Sang;Nam, Byun-Ki;Sung, Yu-Han;Lee, Yoo-JIn;Kim, Sung-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1143-1146
    • /
    • 2005
  • Novel series of electron-transporting hosts, pentavalent aluminum complexes containing 8 hydroxyquinoline ligands and various phenolato ligands were synthesized, and organic light-emitting diodes (OLEDs) were fabricated using these complexes as host materials of phosphorescent emitting device and the fabricated phosphorescent emitting device showed low driving voltage, high efficiency at high current density and good stability under conventional driving condition.

  • PDF

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF