• Title/Summary/Keyword: organic light emitting diode(OLED)

Search Result 289, Processing Time 0.03 seconds

Life Estimation of Organic Light Emission Diode by Accelerated Test (유기발광(有機發光) 다이오드의 가속(加速) 수명(壽命) 시험(試驗)에 관한 연구(硏究))

  • Choi, Young-Tei;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.262-268
    • /
    • 2010
  • Organic light emitting diode is developed fast from 1963 after discovering electric light emitting phenomenon. First PMOLED(passive matrix OLED) product is manufactured and AMOLED(active matrix OLED) using TFT(thin film ransistor) is now in the center. PMOLED is mainly mounted at sub display. but AMOLED is mounted at main display. Also AMOLED expand the market to PMP(portable multimedia players), navigation and TV. Even thought OLED's market is opening to many applications, OLED is worried about lifetime until now. That's appeared in market in a very short time and is not known well about result of OLED's lifetime and reliability test. And there is no standard ssessment method and not enough study to standardization the method. A study's purpose is reduce the time for life test by accelerated current and it can do production possible design by accelerated life model in design phase. It's must be add to process variables and design variables(like ratio of light emitting, organic material structure, condition of aging, etc) to make the best use of supplied accelerated lifetime model in this paper. In terms of lifetime it needs each criterion of applications because of image sticking. In conclusion, it's possible to discover new defect because there is not much time to be opened in market and develop a method of manufacturing process & materials, so we need to study on the subject of this paper continuously.

  • PDF

Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut

  • Cho, Hyunsu;Joo, Chul Woong;Choi, Sukyung;Kang, Chan-mo;Kim, Gi Heon;Shin, Jin-Wook;Kwon, Byoung-Hwa;Lee, Hyunkoo;Byun, Chun-Won;Cho, Nam Sung
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1093-1102
    • /
    • 2021
  • Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.

Bipolar Transport Model of Single Layer OLED for Embedded System

  • Lee, Jung-Ho;Han, Dae-Mun;Kim, Yeong-Real
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.237-241
    • /
    • 2005
  • We present a device model for organic light emitting diodes(OLEDs) which includes charge injection, transport, recombination, and space charge effects in the organic materials. The model can describe both injection limited and space charge limited current flow and the transition between them. Calculated device current, light output, and quantum and power efficiency are presented for different cases of material and device parameters and demonstrate the improvements in device performance in bilayer devices. These results are interpreted using the calculated spatial variation of the electric field, charge density and recombination rate density in the device. We find that efficient OLEDs are possible for a proper choice of organic materials and contact parameters.

  • PDF

Implementation of Logic Gates Using Organic Thin Film Transistor for Gate Driver of Flexible Organic Light-Emitting Diode Displays (유기 박막 트랜지스터를 이용한 유연한 디스플레이의 게이트 드라이버용 로직 게이트 구현)

  • Cho, Seung-Il;Mizukami, Makoto
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Flexible organic light-emitting diode (OLED) displays with organic thin-film transistors (OTFTs) backplanes have been studied. A gate driver is required to drive the OLED display. The gate driver is integrated into the panel to reduce the manufacturing cost of the display panel and to simplify the module structure using fabrication methods based on low-temperature, low-cost, and large-area printing processes. In this paper, pseudo complementary metal oxide semiconductor (CMOS) logic gates are implemented using OTFTs for the gate driver integrated in the flexible OLED display. The pseudo CMOS inverter and NAND gates are designed and fabricated on a flexible plastic substrate using inkjet-printed OTFTs and the same process as the display. Moreover, the operation of the logic gates is confirmed by measurement. The measurement results show that the pseudo CMOS inverter can operate at input signal frequencies up to 1 kHz, indicating the possibility of the gate driver being integrated in the flexible OLED display.

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Adaptive Color Shifter for RGB Channel Unbalance in Organic Light Emitting Diode Display (OLED Display의 RGB 채널간 불균형 보정을 위한 Adaptive Color Shifter)

  • Cho, Ho-Sang;Jang, Kyoung-Hoon;Kim, Chang-Hun;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1653-1662
    • /
    • 2012
  • Recently, Organic Light Emitting Diode (OLED) that is broadly applied as next generation display has various advantages. However, OLED display causes unbalanced color tone due to the difference of luminance efficiency among luminous elements. In this paper, we propose adaptive color shifter (ACS) to resolve the RGB channel unbalance and to have wide color range of a relatively weak channel using the image processing method. proposed ACS system was simulated using a variety of image. Also, we numerically analyzed using hue histogram, CIE-1931 xyz color space.

Fabrication of organic light emitting diode with inkjet printing technology (잉크젯 프린팅 기술을 이용한 유기 발광 다이오드 제작)

  • Kim, Myong-Ki;Shin, Kwon-Yong;Hwang, Jun-Young;Kang, Kyung-Sae;Kang, Heui-Seok;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1448-1449
    • /
    • 2008
  • Inkjet printing is commonly used in depositing the solution of functional materials on the specific locations of a substrate, and also it can provide easy and fast patterning of polymer films over a large area. Inkjet printing is applicable to fabricating an organic light emitting diode (OLED), since conducting materials used as emissive electroluminescent layers can be manufactured into inks for ink jetting. By using the inkjet technology, we have succeeded in patterning a poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) layer and a poly[2-Methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layer on the Indume tin oxide (ITO) patterned substrates, and fabricating organic light emitting diodes.

  • PDF

Development of Blue Organic Light-emitting Diodes(OLEDs) Due to Change in Mixed Ratio of HTL:EML(DPVBi:NPB) Layers (HTL:EML(DPVBi:NPB)층의 조성비 변화에 따른 청색 유기 발광 소자 개발)

  • Lee, Tae-Sung;Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.853-858
    • /
    • 2008
  • The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.26-30
    • /
    • 2006
  • Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.

A Charge-Pump Passive-Matrix Pixel Driver for Organic Light Emitting Diodes

  • Seo, Jong-Wook;Kim, Han-Byul;Kim, Bong-Ok;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.108-112
    • /
    • 2002
  • A new pixel driving method for organic light-emitting diode (OLED) flat-panel display (FPD) is proposed. The new charge-pump passive-matrix pixel driver consists only of a storage capacitance and a rectifying diode, and no thin-film transistor (TFT) is needed. The new driver not only supplies a constant current to the OLED throughout the whole period of panel scanning like an active-matrix driver, but also provides a highly linear gray-scale control through a pure digital manner.

  • PDF