• Title/Summary/Keyword: organic ginseng leaf

Search Result 37, Processing Time 0.023 seconds

Suppressive Effects of Homemade Environment-friendly Materials on Alternaria Blight and Anthracnose of Ginseng (친환경자재를 이용한 인삼 점무늬병과 탄저병의 발병억제효과)

  • Lim, Jin-Soo;Mo, Hwang-Sung;Lee, Eung-Ho;Park, Kee-Choon;Chung, Chan-Moon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.705-718
    • /
    • 2014
  • This study was performed to evaluate the suppressive effects of organic fungicides made using environment-friendly materials on leaf spot disease and anthracnose that infect ginseng. Anthracnose (Colletotrichum gloeosporioides) and leaf spot disease (Alternaria panax) are principal diseases that decrease the yield of ginseng by defoliation before root enlargement. Fermented eggs and oyster shells, water extract of green tea and ethanol extract of red ginseng dregs were significantly effective in suppressing leaf spot disease. Fermented crab and shrimp shells and fermented motherwort were also effective in suppressing the recurrence of ginseng anthracnose. The preventive effects of these environment-friendly materials were definitely superior to the therapeutic effects. Therefore, these materials could be used as alternatives to chemical pesticides, which can not be applied in organic ginseng cultivation field. These organic fungicides need to be applied before the incidence of ginseng anthracnose in order to maximize their suppressive effects.

Quality Characteristics of Madeleine Added with Organic Ginseng (Panax ginseng C. A. Meyer) Leaf (유기농 인삼 잎을 첨가한 마들렌의 품질 특성)

  • Kim, Ki-Ppum;Kim, Kyoung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.717-722
    • /
    • 2016
  • The purpose of this study was to evaluate the quality of madeleine added with different concentrations (0, 1, 3, 5, and 7%) of organic ginseng leaves. The study results found that the pH and moisture of madeleine with control were higher than those of the samples. On the other hand, specific gravity of madeleine was highest at 7% leaf content (1.04). The loss rate of madeleine was not significantly different among the samples. The Hunter L, a, and b values of crust decreased as the concentration of organic ginseng leaves increased. The Hunter L and a values of crumb decreased as the concentration of organic ginseng leaves increased, whereas b values of crumb increased. The hardness of madeleine increased after addition of organic ginseng leaves, whereas adhesiveness, chewiness, gumminess, and cohesiveness of madeleine decreased. 2,2'-Diphenyl-1-picrylhydrazyl radical scavenging activity of madeleine was significantly elevated with increasing content of organic ginseng leaves (P<0.05). In a sensory evaluation, healthy image and color were highest at 3% leaf content, whereas moistness, softness, and chewiness decreased as the concentration of organic ginseng leaves increased. The flavor and overall acceptability of madeleine added with 3% organic ginseng leaves were higher than those of both control and other samples. Therefore, the results suggest that 3% organic ginseng leaves addition to madeleine could be helpful for improving physical quality and taste.

Selection and Control Effect of Environmental Friendly Organic Materials for Controlling the Ginseng Alternaria Blight (인삼에 발생하는 점무늬병의 친환경적 방제를 위한 유기농업자재 선발 및 기 선발된 자재의 효과시험)

  • Kim, Woo Sik;Park, Jee Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.388-393
    • /
    • 2013
  • This study was conducted to select environmental friendly organic materials for controlling the ginseng alternaria blight and to evaluate their effects from 2011 to 2012. Alternaria blight is caused by Alternaria panax and is the most common ginseng disease in Korea. Environmental friendly organic materials were used to reduce amount of chemical fungicides and the number of spray for control of Ginseng Alternaria leaf blight. In 4 years of ginseng, control value of Alternaria leaf blight by single application of Defenoconazole WP was 82.3% and those of single application was 62.0~75.9%. Consequently, mixed or alternated application of eco-material products could be recommended as a control method to reduce the amount of fungicides.

Soil Chemical Property and Leaf Mineral Nutrient of Ginseng Cultivated in Paddy Field Occurring Leaf Discoloration (인삼 논재배에서 황증이 발생한 토양과 식물체의 무기성분 함량 특성)

  • Lee, Sung Woo;Park, Kee Choon;Lee, Seung Ho;Park, Jin Myeon;Jang, In Bok;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.4
    • /
    • pp.289-295
    • /
    • 2013
  • This study was carried out to investigate the cause of leaf discoloration occurring frequently in paddy cultivation. Chemical property of soil and inorganic nutrient component of leaf were analyzed on abnormal fields of 7 regions where leaf discoloration occurred severely and normal fields of 7 regions among ginseng garden. The pH of abnormal fields was strong acidic condition (pH 5.51) compare to normal fields of slightly acid condition (pH 6.42). Calcium and magnesium content in abnormal fields were lower distinctly than that of normal fields, while EC, organic matter, phosphate, and potassium content showed not distinct difference between abnormal and normal fields. Whereas calcium and magnesium content were distinctly high in normal fields, both of potassium and iron content of ginseng leaf were distinctly high in abnormal fields. In particular, iron content of abnormal fields was more 1.94 times in soil, and 3.03 times in leaf than that of normal fields. In soil chemical property, there were significant negative correlation between leaf discoloration ratio and soil pH, and there were also significant positive correlation between leaf discoloration ratio and iron content. In ginseng leaf, there were highly significant negative correlation between leaf discoloration ratio and calcium content, and there were also highly significant positive correlation between leaf discoloration ratio and iron content.

A Simple Method for the Preparation of Crude Gintonin from Ginseng Root, Stem, and Leaf

  • Pyo, Mi-Kyung;Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Lee, Soo-Han;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.209-218
    • /
    • 2011
  • Ginseng has been used as a general tonic agent to invigorate the human body as an adaptogenic agent. In a previous report, we have shown that ginseng contains a novel glycolipoprotein called gintonin. The main function of gintonin is to transiently enhance intracellular free $Ca^{2+}$ $[Ca^{2+}]_i$ levels in animal cells. The previous method for gintonin isolation included multiple steps using organic solvents. In the present report, we developed a simple method for the preparation of crude gintonin from ginseng root as well as stem and leaf, which produced a higher yield of gintonin than the previous one. The yield of gintonin was 0.20%, 0.29%, and 0.81% from ginseng root, stem, and leaf, respectively. The apparent molecular weight of gintonin isolated from stem and leaf through sodium dodecyl sulfate polyacrylamide gel electrophoresis was almost same as that from root but the compositions of amino acids, carbohydrates or lipids differed slightly between them. We also examined the effects of crude gintonin from ginseng root, stem, and leaf on endogenous $Ca^{2+}$-activated $Cl^-$ channel (CaCC) activity of Xenopus oocytes through mobilization of $[Ca^{2+}]_i$. We found that the order of potency for the activation of CaCC was ginseng root > stem > leaf. The $ED_{50}$ was $1.4{\pm}1.4$, $4.5{\pm}5.9$, and $3.9{\pm}1.1$ mg/mL for root, stem and leaf, respectively. In the present study, we demonstrated for the first time that in addition to ginseng root, ginseng stem and leaf also contain gintonin. Gintonin can be prepared from a simple method with higher yield of gintonin from ginseng root, stem, and leaf. Finally, these results demonstrate the possibility that ginseng stem and leaf could also be utilized for ginstonin preparation after a simple procedure, rather than being discarded.

Characteristics of Absorption and Accumulation of Inorganic Germanium in Panax ginseng C. A. Meyer

  • Kang, Je-Yong;Park, Chan-Soo;Ko, Sung-Ryong;In, Kyo;Park, Chol-Soo;Lee, Dong-Yun;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2011
  • The characteristics of absorption and accumulation of inorganic germanium in Panax ginseng C. A. Meyer were examined. In 4-year-old P. ginseng, the germanium content of the field soil increased with increased amounts and frequencies of inorganic germanium application, while chemical components of the soil, such as available phosphate and exchangeable calcium, potassium, and magnesium, decreased with the increased inorganic germanium application. In the 4-year-old P. ginseng, the germanium content was highest in the rhizome and increased in the order of stem, leaf, lateral root, and main root, suggesting that inorganic germanium was absorbed from the root and translocated to the stem and leaf via the rhizome. As for changes in ginsenosides in 4-year-old P. ginseng rhizomes, the contents of ginsenosides $Rb_1$, $Rb_2$, Re, and Rf decreased as the germanium content in soil increased. Ginsenosides $Rb_1$, $Rb_2$, Rc, Re, and Rf in the main root also decreased with increasing germanium content in the main root. The results suggest that inorganic germanium treatment may increase organic germanium in harvested P. ginseng, thus enhancing the medicinal effi cacy of ginseng products.

Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality (인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF

Effects of Spraying Lime-Bordeaux Mixture on Yield, Ginsenoside, and 70% Ethanol Extract Contents of 3-Year-Old Ginseng in Panax ginseng C. A. Meyer (석회보르도액 처리가 3년생 인삼의 생육과 진세노사이드 및 엑스 함량에 미치는 영향)

  • Lee, Sung-Woo;Kim, Gum-Sook;Hyun, Dong-Yun;Kim, Yong-Burm;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.4
    • /
    • pp.244-247
    • /
    • 2010
  • It's crucial to control Alternaria blight and Anthracnose emerging mostly on ginseng leaves during the rainy season to increase the organic ginseng products. The purpose of this study is to investigate the efficay of lime-brodeaux spray on the ginseng leaves and evaluate the growth and yield of the ginseng, and the contents of ginsenoside and 70% ethanol extracts from 3-year-old ginseng variety, Cheonpoong. Lime-bordeaux sprayings were conducted in the ratio of 6-6 in June, 8-8 from July to September every 15 days. After June 10, the spraying have no effects on the growth leaf and stem, and there was no significant increase in chlorophyll contents. The ratio of intact leaf and root were distinctly increased because Alternaria blight and Anthracnose were decreased by spraying lime-bordeaux mixture. Root weight per plant and root yield were increased by 15%, and 62% in 3-year old ginseng, respectively, because the ratio of intact leaf and root were higher by using lime-bordeaux mixture. Furthermore, spraying of lime-bordeaux mixture is prone to increase the ratio of rusty root in ginseng. Spraying of lime-bordeaux mixture decreased both of the contents of ginsenoside and 70% ethanol extract by 13.7%, and 15.2% in 3-year-old ginseng, respectively.

Effect of Ridge Height on Growth Characteristics and Yield of 6 Year Old Panax ginseng in Cultivation of Paddy Soil (논토양에서 두둑높이에 따른 6년생 인삼의 생육 및 수량성)

  • Lee, Sung Woo;Lee, Seung Ho;Jang, In Bok;Lan, Jin Mei;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.5
    • /
    • pp.351-356
    • /
    • 2015
  • Background : Ginseng is mainly grown as a break crop in paddy fields after rice has been cultured for approximately 4 - 5 years, because it reduces the negative effects of continuous rice cropping. However, physiological disorders, such as leaf discoloration, occur in ginseng grown in paddy fields with poor drainage and excessive levels of inorganic components. Methods and Results : This study investigated the effect of ridge height on the growth characteristics and yield of 6 year old Panax ginseng. Ridge height was varied by making 20, 30, and 40 cm high ridges in a pooly drained paddy field. Soil moisture content decreased, while electrical conductivity (EC) as the ridge height increased. The $NO_3$, K, Ca, Mg, and Na levels also rose as ridge height increased, but organic matter and $P_2O_4$ levels did not. The leaf discoloration ratio rose as the ridge height increased, and root yield reached a peak when the ridge height was 30 cm. Conclusion : A ridge height of 30 cm in poorly drained paddy field improved ginseng growth by reducing leaf discoloration and increasing root survival, owing to more suitable soil moisture and EC levels.

Growth Characteristics and Ginsenosides Content of 4-Year-Old Ginseng by Spraying Lime-Bordeaux Mixture in Panax ginseng C. A. Meyer (석회보르도액 처리에 따른 4년근 인삼의 생육과 진세노사이드 함량 특성)

  • Lee, Sung-Woo;Kim, Geum-Soog;Park, Kee-Choon;Lee, Seung-Ho;Jang, In-Bok;Eo, Ji-Nu;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.2
    • /
    • pp.89-93
    • /
    • 2012
  • An important factor in the production of organic ginseng is the control of $Alternaria$ blight and anthracnose, which mostly affect the leaves in the summer. We compared the effects of a lime-bordeaux mixture (LBM) and agricultural chemicals on the growth characteristics and ginsenoside content in 4-year-old ginseng plants when they were sprayed at 15-day intervals from mid-June to the end of September. The increases in leaf length, and survive-leaf ratio in plants sprayed with LBM were greater than the increases of the control plants, but less than those of agricultural chemicals treatment. The root weight per plant in the plants sprayed with LBM increased more distinctly than that in the control plants, while it was significantly lower than that in plants sprayed with agricultural chemicals. The root yield in plants sprayed with LBM increased by 21% compared to the root yield in the control plants, but decreased by 7% compared to that in plants sprayed with agricultural chemicals because of the decreases in leaf area and survive-leaf ratio. Spraying of LBM had a significant effect on the ginsenoside contents. The total ginsenoside content was highest in the control plants and lowest in the plants sprayed with agricultural chemicals and total ginsenoside contents was great relative to survive-leaf ratio and root weight.