• Title/Summary/Keyword: organic farming materials

Search Result 100, Processing Time 0.032 seconds

Soil Characteristics of the Saprolite Piled Upland Fields at Highland in Gangwon Province (강원도 고랭지의 석비레 성토지 토양 특성)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.66-73
    • /
    • 2004
  • As one of the typical farming practices in the sloped upland in Pyeongchang and Hongcheon area, application of piling with coarse saprolite materials has been practiced by farmers for several reasons such as reduction of damage by monocropping, better development of plant roots, and better drainage. However, adverse effect on application of coarse saprolite soil materials to environmental aspects should not be ignored. Therefore, this research was conducted to evaluate the physicochemical properties of coarse saprolite materials in upland fields in Pyeongchang area. According to particle size distribution of coarse saprolite materials, averaged gravel contents for Pyeongchang and Hongcheon county were 16.7 and 25.3%, respectively. There was no significant difference in gravel contents by soil depth, and CV values for each particle size ranged from 20 to 40%, which implied that application of coarse material with similar properties. When we compared CEC values of dressed soil with or without considering gravel content, CEC values decreased as increasing gravel contents. The penetration resistances were 0.04-7.48 MPa at the 0 to 10 cm surface soil, and 0.10 to 8.80 MPa at the depth below 11 cm. The bulk density of the soil was $1.15g\;cm^{-3}$ at the surface soil and 1.29 to $1.35g\;cm^{-3}$ at the soil depth below 10 cm. The organic matter content, cation exchange capacity, and avaliable $P_2O_5$ concentrations of soil in upland where piling with saprolite materials of Pyeongchang area applied were $12.4g\;kg^{-1}$, $7.1cmol_c\;kg^{-1}$, and $526mg\;kg^{-1}$, respectively. Cation exchange capacity was lower than that of averaged Korean upland soil, while available $P_2O_5$ concentration was relatively higher than that of averaged Korean upland, which indicated high input of various fertilizers.

Research on the Working Environment and Personal Protective Equipment of Korean Native Cattle Raising Farmers (한우 사육자 작업환경 및 작업복과 보호구 착용 실태 분석)

  • Kim, Insoo;Lee, Kyung-Suk;Chae, Hye-Seon;Kim, Kyungsu;Choi, Dong-Phil;Kim, Hyo-Cher
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.4
    • /
    • pp.891-906
    • /
    • 2016
  • This study examined the working site environment of Korean native cattle raising farmers and their actual condition of wearing personal protective equipment as part of preventing disasters during agricultural work. To this end, 160 Korean cattle raising farmers were surveyed and a site visit was performed on 10 farms. According to an examination of the cattle breeding environment, the major harmful factors were in the following order: fine dust (12.8%), organic feed dust (10.3%), contact with cattle (9.7%), manure (8.2%), germs and viruses (8.1%), harmful gases (7.4), contact with obstacles (6.7), and temperature (6.6%). The current status of the rate of wearing protection was in the order of gloves (20.9%), working hats (19.7%), boots (19.6%), masks (10.9%), protective clothing (8.9%), and specialized working clothing (6.6%). Nevertheless, most Korean cattle raising farmers recognized the risks when they did not wear protective equipment and the need for wearing protectors, but they mostly did not wear personal protective equipment due to a lack of knowledge on the selection of appropriate personal protective equipment and the discomfort they experience when they put on protectors. Even when they put on protective equipment, 38% was inappropriate for the farming work environment. Given the research results, improvements on and the development of specialized working clothing and personal protective equipment to protect farmers from harmful and dangerous materials from the cattle nurturing environment is necessary. Overall, based on the study data, objectified data collection, a determination of the necessary performance elements of personal protective equipment, and R&D will be needed through an on-site current status investigation.

Determination of Proper Application Timing and Frequency for Management of Tomato Leaf Mold Disease by Commercially Available Microbial Preparations (미생물제제 이용 토마토 잎곰팡이병 방제시기 및 살포회수 결정)

  • Kang, Beom-Ryong;Ko, Sug-Ju;Kim, Do-Ik;Choi, Duck-Soo;Kim, Seon-Gon
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • In order to develop a environmentally friendly control protocol for managing tomato leaf mold disease in the field, we employed bacteria- and fungi-based commercially available microbial preparations. The field experiment was conducted from April to July in 2010. Average incidence rates tomato leaf mold caused by Fulvia fulva were 13.1% at the two plastic houses located in Jangsung, Jeonnam area. Initially 11 microbial preparations were tested for antifungal activity against F. fulva in vitro. Among them, 7 selected preparations showed to be inhibited the mycelial growth of the fungal pathogen over 50%. Four microbes suppressed disease incidence as much 50% under greenhouse condition. Eventually in the field two microbial products including Bacillus subtilis GB-0365 and B. subtilis KB-401 respectively were showed control value up to 71.8% for four times sprays from 20 days to 70 days after transplanting. Furthermore, the control value of three times spray program demonstrated 79.3%. Efficacy of the three and four spray programs was more effective than that of non-spray control treatment. Our results indicated that adjustment of application method of commercially available microbial preparation could be used to control a target plant disease as an effective and efficient crop protection system for organic farming.

Effect of Bordeaux Mixture on Control of Rice Leaf Blast (벼 유기재배에서 석회보르도액을 이용한 벼 잎도열병 방제 효과)

  • Kang, Beom-Ryong;Kim, Seon-Gon;Kim, Do-Ik;Lee, Yong-Hwan;Choi, Kyong-Ju;Choi, Yong-Soo
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • Recently organic farming practice of rice has been emerged in Korea, but one of the major limiting factor is the no effective environmental-friendly agro-materials to control major plant diseases. Bordeaux mixture has been used effectively as a preventive agro-chemical. The aim of this study was to investigate efficacy of Bordeanux mixture on control of rice blast caused by Magnaporthe grisea which is one of the disruptive rice diseases in world-wide. In greenhouse experiment, pre-treatment of 6-6 type of Bordeaux mixture before inoculation of spore suspension of M. grasea showed 71 % of control value. In field experiment, preventive applications of 4-8 and 6-6 types of Bordeaux mixture showed over 71 % of the control value. Chemical injury on rice leaves were not found in the application concentrations of all types of Bordeaux mixture, but observed in applications of Bordeaux mixtures between 30 and 100 diluted concentrations. This results indicate Bordeaux mixture can be used as an effective environmental-friendly agro-chemical to control rice blast disease in the field.

Study on new casing materials of Agaricus bisporus (양송이의 새로운 복토재료에 관한 연구)

  • Kim, Yong-Gyun;Lee, Byung-Joo;Lee, Sun-Gye;Lee, Byung-Eui
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This study was aimed to improve the productivity and income of mushroom farming by developing a new casing material as a substitute for clay loam casing soil, which is becoming more difficult to acquire. When the new casing materials were used for the stable production of button mushroom (Agaricus bisporus), a 1:1 mixture of clay loam and button mushroom media obtained after harvest supported 13% greater mycelial growth ($32.0kg/3.3m^2$). This material was better than clay loam soil in preventing contamination with environmental compounds and pests. The use of an inexpensive 1:1 mixture of peat moss and coco peat resulted superior mycelial growth with 4% better yield ($32.9kg/3.3m^2$) compared with conventional clay loam soil. Advantages of these casing materials included ready availability and improved productivity. Mixtures of peat moss + coco peat + zeolite (50%:30%:20%) and coco peat + coal ash (75%:25%) could substitute for conventional casing soil. Additionally, the novel mixtures containing material obtained after cultivation might be used to produce organic fertilizer.

Production and biological applications for marine proteins and peptides- An overview (해양생물로부터 기능성 펩티드의 생산 및 응용)

  • Kim, Se-Kwon;Byun, Hee-Guk
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.278-301
    • /
    • 2018
  • Although more than 80% of living organisms are found in marine ecosystems, only less than 10% of marine resources have been utilized for human food consumptions and other usages. It is well known that marine resources (fish, shellfish and algae) have exceptional nutritional properties; however, their functional characteristic has not been completely discovered. It is believed that metabolites (organic compounds, proteins, peptides, lipids, minerals, etc.) play an important role to show its biological properties. Marine proteins and peptides are considered to be future drugs due to their excellent biological activities with a fewer adverse side effect. Marine peptides show several biological activities, including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-viral, anti-tumor, anti-diabetic, anti-hypertensive, anti-coagulant, immunomodulatory, appetite suppressing and neuroprotective effects. Therefore, the pharmaceutical, nutraceutical, and cosmeceutical companies have been paid attention to the marine peptides to commercialize into products. This current review mainly focused on the above mentioned biological activities of marine peptides and protein hydrolysates as a functional food and pharmaceutical applications. To commercialize these materials in industrial level required large quantity in high-purity level, and it is complicated to produce huge quantity from the marine resources due to insufficient raw materials, unavailability of raw materials through a year, hinder the growth with geographical variations, and availability of compounds in extreme small quantities. The best solution for these issues is to introduce new modern technologies such as artificial intelligence robots, drones, submersibles and automated raw material harvesting vessels in farming industries instead of man power, which will lead to 4th industrial revolution.

Changes of Soil Properties through the Remediation Processes and Techniques for the Restoration of Remediated Soils (오염 토양 정화공정에 의한 토양의 특성 변화 및 정화토의 회복기술)

  • Lee, Sang-Woo;Lee, Woo-Chun;Lee, Sang-Hun;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.441-477
    • /
    • 2020
  • There have been raised other environmental issues related to remediated soils piled up in numerous carry-out processing facilities because a considerable quantity of them have been produced every year, but most of them have not been relevantly reused or recycled. Thus, this article reports the trend of researches on the development of techniques to restore the quality of remediated soils to activate their reuse and recycling. Firstly, the tendency of change in soil properties through remediation processes was looked over, and then the degradation of soil quality was characterized according to the type of remediation processes. Besides, the direction of policy to promote the reuse and recycling of remediated soils was introduced, and finally, the future works needed were suggested. This article was prepared based on the results of the survey of domestic and foreign literature. A number of literature were reviewed to scrutinize the change of soil properties due to remediation processes and diverse techniques for the amendment and restoration of remediated soils. Furthermore, the policies related to the reuse and recycling of remediated soils were arranged with the reference of the first and second versions of the Soil Conservation Master Plan of Korea. The literature survey focused on three kinds of remediation technologies, such as land farming, soil washing, and thermal desorption, which were most frequently used so far in Korea. The results indicate that the tendency of change in soil properties was significantly different depending on the type of remediation processes applied, and the degradation characteristics of soil quality were also totally different between them. The soil amendment and restoration can be categorized as three techniques depending on the type of substances used, such as inorganic, organic, and biological ones. Diverse individual materials have been used, and the soil properties improved or enhanced were dependent on the type of specific materials utilized. However, few studies on the restoration of soil qualities degraded during the remediation processes have not been carried out so far. The second Soil Conservation Master Plan states the quality certification and target management system of remediated soils, and it is expected that their reuse and recycling will be facilitated hereafter. With the consideration of the type of remediation processes implemented and public utility, the restoration technologies of remediated soils should be developed for the vitalization of their reuse and recycling. Besides, practical and specific measures should be taken to support the policy specified in the second Soil Conservation Master Plan and to promote reuse/recycling of remediated soils.

A Study on a New Working-system of Mechanical Land Clearing and Development of Fertle Soil. (기계개간의 새로운 작업체계와 숙지화 촉진에 관한 연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2162-2176
    • /
    • 1971
  • From the ancient times our forefathers settled down in this peninsular and cultivated the hills and waste-lands into fields. Instead of fertilizing the lands they moved to find other fertile lands and lived a feudal life of agriculture and various machines played a main role in the land reclamation. The best method of land clearing, the time and efficiency in the operation and the effect of growing crops should sysematically analized prior to the time of 3rd Five-year Economic Development(1972-1976) in order to cultivated 210,000 ha of waste-land or the modernization of our country. The present study was investigated to find out a new working-system of mechanical land clearing and development of fertile soil. The results are as follows: 1) The land reclamation in natural slope is much more encourageable in land clearing and farming when the slope is below ten grades than bench terrace. 2) Weeds were mixed with soil in the land clearing work in order to supply organic materials and to make soil swollen instead of burning of just removing. 3) The equipments such as bulldozers, harrows, power tillers and so on should be prepared in order to do a systematic work in the land clearing. 4) The work of pulling-up roots is dependent upon the forms of roots spreading under the ground. The work of the pulling-up the straight roots was most difficult. 5) The land clearing work of the wrinkled style blocks was easy in pulling up roots and in the time of first plowing. The harrowing work could also be simply done. 6) The amount of soil carried was $240m^3/10a$, 15.6% increased amount from the standard block, while the required time of clearing work was 2 hours 15 minutes 45 seconds/10a, the one third of time required for the standard block. 7) The time disc harrowing work increased 50%, or 15 minutes/10a compared to the harrowing work required in the cultivated soil. 8) The time of rotary tilling increased 2.4 times or 1 hour 47 minutes 43 seconds/10a compared to the time required in the cultivated soil. 9) The reclamed land should be fertilized according to the soil quality, especially added fertilizer should be more than 1,200kg/10a, limes 20kg/10a. In order to produce added fertilizer grass fields should be needed. 10) The experiment of pasture growing is now progressing and therefore the effect of land clearing and the degree of developed soil will be investigated before long.

  • PDF

Assessment on the Content of Heavy Metal in Orchard Soils in Middle Part of Korea (중부지역 과수원 토양중의 중금속 함량 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • Objectives of this study were to monitor the distribution of heavy metals, to compare extractable heavy metal with total content and to investigate the relationships between soil physico-chemical properties and heavy metals in orchard soil. Sampling sites were 48 in Gyeonggi, 36 in Gangwon, 36 in Chungbuk, and 44 in Chungnam, Soils were collected farm form two depths, 0 to 20 and 20 to 40 cm (here after referred to as upper and lower layers) from March to May in 1998. Total contents of heavy metal in soils were analyzed by ICP-OES after acid digestion ($HNO_3$:HCl:$H_2O_2$) whereas extractable contents were measured after successive extraction of 0.1N-HCl, 0.05 M-EDTA, and 0.005 M-DTPA. Mercury was analysed by mercury atomizer. The average contents of Cd Cu, and Pb in the extractant with 0.1N-HCl at upper layer were 0.080, 4.23, and 3.42 mg/kg, respectively. As content in the extractant with 1N-HCl was 0.44 mg/kg, and total contents of Zn, Ni and Hg were 78.9, 16.1, and 0.052 mg/kg, respectively. The ratios of concentrations of heavy metals to threshold values (Cd 1.5, Cu 50, Pb 100, Zn 300, Ni 40, Hg 4 mg/ke in Soil Environmental Conservation Act in Korea (2001) were low in the range of $1/2.5{\sim}1/76.9$ in orchard soils. The ratios of extractable heavy metal to total content ranged $5.4{\sim}9.21%$ for Cd, $27.9{\sim}47.8%$ for Cu, $12.6{\sim}21.8$% for Pb, $15.8{\sim}20.3%$ for Zn, $5.3{\sim}6.3%$ for Ni, and $0.7{\sim}3.6%$ for Zn, respectively. Cu and Pb contents in 0.05 M-EDTA extractable solution were higher than those in the other extractable solution. Total contents of Cd, Ni and Ni in soils were negatively correlated with sand content but positively correlated with silt and clay contents. Ratios of extractable heavy metal to total content were negatively correlated with clay content but ai and Ni contents were positively correlated with soil pH, organic matter, and available phosphorous. Therefore, the orchard soil was safe because the heavy metal contents of orchard soil were very low as compared to its threshold value in the Soil Environmental Conservation Act. However, it need to consider the input of agricultural materials to the agricultural land for farming practices for assessment of heavy metals.

Composting Method and Physicochemical Characteristics of By-products from Home Garden Plants and Small Herbivore Feces (옥수수 부산물과 토끼 분변의 이화학적 성분특성 및 퇴비 제조조건)

  • Kim, Dae-Gyun;Kim, Jin-Young;Lee, Won-Suk;Kim, Hye-Hyeong;Seo, Myung-Whoon;Park, In-Tae;Hyun, Junge;Yoo, Gayoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.695-703
    • /
    • 2018
  • This study was conducted to suggest a sustainable farming practice forresource recycling in vegetable gardens of North Korea. In North Korea, farmers are allowed to own private vegetable gardens less than $100m^2$. However, usage of fertilizers in private vegetable gardens is very limited due to economic sanctions by UN security council. If North and South Korea initiated the cooperative action in the near future, agricultural sector would be the highest priority cooperation area. Considering the current North Korean situation in agriculture, we would like to suggest a method for producing organic fertilizer manure. For raw materials for producing manure, we selected corn byproduct, which is the most abundant material, and rabbits' feces, which are easily obtained from individual private farms in North Korea. As we cannot get corn byproducts and rabbits' feces from North Korea, we prepared samples of corn byproducts and rabbits; feces from many places in South Korea. After statistical analysis of variance, there was no significant difference in the T-N contents of corn byproducts from Gyeonggi, Gangwon, Chungnam, Chungbuk, Jeollabuk and Gyeongsangnam-dos, which indicates that the fertilizing quality of corn byproducts does not vary significantly in the spatial scale of South. Korea. In this sense, if we use corn samples from Gyeonggi province, they would not be very different from those of North Korean regions. Physicochemical properties of rabbits' feces were different between those eating feed grains and those eating plants only. Hence, we used rabbits' feces of the rabbits from Yeonchun area, which were fed by plants only. Using three different mixing ratios of corn byproducts and rabbits' feces, composting was conducted for 60 days. The mixing ratio of 1:1 produced the manure with % T-N of 1.98% and OM/N ratio of 31.7 after 30 days of composting, which is comparable to the quality of commercial manure.