• Title/Summary/Keyword: organic electroluminescent

Search Result 198, Processing Time 0.019 seconds

Studies on The Optical and Electrical Properties of Europium Complex (Europium compound박막의 전기적 광학적 특성에 관한 연구)

  • 이명호;표상우;김영관;김정수;이한성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.317-320
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(Phen)/Al(A), glass substrate/ITO/TPD/Eu(TTA)$_3$(phen)/Al(B) aNd glass substrate/ITO/TPD/Eu(TTA)$_3$(Phen)/A1Q$_3$/Al (C) structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material, and tris(8-hydroxyquinoline) Aluminum (AlQ$_3$) as an electron transporting layer. Etectroluminescent(EL) and I-V characteristics of Eu(TTA)$_3$(phen) with a various thickness were investigated. This structure shows the red EL spectrum, which is almost the same as the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/㎤ at a dc operation voltage of 9V. Electrical transporting phenomena of these structures was explained using the trapped-charge-limited current model with I-V characteristics.

  • PDF

Light-emitting property of the EL device with the thickness ratio of the HTL.ETL (HTL/ETL 두께 비율에 따른 EL 소자의 발광 특성)

  • 손철호;여철호;박정일;장선주;박종화;이영종;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.170-173
    • /
    • 2000
  • In this study, we have investigated the light-emitting property of the EL device with the thickness ratio of the HTL/ETL, which was 500$\AA$:500$\AA$, 400$\AA$:600$\AA$, 600$\AA$:400$\AA$. The ALq$_3$ was used for the ETL. We have studied the relation of voltage, contrase, efficiency for current density. Emission was observed above 10mA/$\textrm{cm}^2$ and luminance was measured to be 1030cd/$m^2$ at a current density of 100mA/$\textrm{cm}^2$ in 500$\AA$/500$\AA$ sample. A luminance of over 2500cd/$m^2$ was also observed after the final fabrication process in 500$\AA$/500$\AA$ sample

  • PDF

Emission Characteristics of Multi-Tandem OLED using MoOx with CGL (CGL 층으로 MoOx를 사용한 다중 적층구조 OLED의 발광 특성)

  • Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.105-109
    • /
    • 2015
  • We studied emission characteristics of blue fluorescent multi-tandem OLEDs using $Al/MoO_x$ as charge generation layer(CGL). Threshold voltage for 2, 3, 4, and 5 units tandem OLEDs was 8, 11, 14 and 18 V, respectively. The threshold voltage in multi-tandem OLEDs was lower than multiple of 4 V for the single OLED. Maximum current efficiency and maximum quantum efficiency of single OLED were 7.6 cd/A and 5.5%. Maximum current efficiency for 2, 3, 4, and 5 units tandem OLEDs was 22.6, 31.4, 41.2, and 46.6 cd/A, respectively. Maximum quantum efficiency for 2, 3, 4, and 5 units tandem OLEDs was 11.8, 15.8, 21.8, and 25.6%, respectively. The maximum current efficiency and maximum quantum efficiency in multi-tandem OLEDs were higher than multiple of those for the single OLED. The intensity for 508 nm peak was changed and the peak wavelength was red shift by increase of tandem unit in electroluminescent emission spectra. These phenomena can be caused by micro-cavity effect with increasing of organic layer thickness.

Characteristics of OLEDs Using $Alq_2-Ncd\;and\;Alq_2-Nq$ as Emitting Layer ($Alq_2-Ncd$$Alq_2-Nq$를 이용한 유기전기발광 소자의 특성)

  • Yang, Ki-Sung;Shin, Hoon-Kyu;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.447-450
    • /
    • 2003
  • In this paper, new luminescent material, 6,11-dihydoxy-5,12-naphtacene-dione Alq3 complex (Alq2-Ncd), 1,4-dihydoxy-5,8-naphtaquinone Alq3 complex(Alq2-Nq) was synthesized. And extended efforts had been made to obtain high-performance electroluminescent(EL) devices, since the first report of organic light-emitting diodes(OLEDS) based on tris-(8-hydroxyquinoline) aluminum(Alq3). We have performed investigate characterization of the materials. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured by Flat Panel Display Analysis System(Model 200-AT) at room temperature. An intensive research is going on to improve the device efficiency using the hole injection layer, different electrodes, and etc. By using the hole injection layer, the charge-injection can be controlled and the stability could be improved. This study indicates not only the sterical effect but also some other effects would be responsible for the change of the emission wavelength.

  • PDF

2-Wavelength Organic Light-Emitting Diodes Using Bebq2 Selectively Doped with (pq)2Ir(acac) (Bebq2에 (pq)2Ir(acac)가 선택 도핑된 2-파장 유기발광다이오드)

  • Kim, Min-Young;Ji, Hyun-Jin;Jang, Ji-Geun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.212-215
    • /
    • 2011
  • New organic light-emitting diodes with structure of indium-tin-oxide[ITO]/N,N'-diphenyl-N, N'-bis-[4-(phenyl-m-tolvlamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-poly-aminophenyl) cyclohexane[TAPC]/bis(10-hydroxy-benzo(h)quinolinato)beryllium[Bebq2]/Bebq2:iridium(III)bis(2-phenylquinoline-N,C2')acetylacetonate[(pq)2Ir(acac)]/ET-137[electron transport material from SFC Co]/LiF/Al using the selective doping of 5%-(pq)2Ir(acac) in a single Bebq2 host in the two wavelength (green, orange) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of Bebq2, two kinds of devices with the doped emitter thicknesses of 20${\AA}$ and 40${\AA}$ in the Bebq2:(pq)2Ir(acac) were fabricated. The device with a 20${\AA}$-thick doped emitter is referred to as "D-1" and the device with a 4${\AA}$-thick doped emitter is referred to as "D-2". Under an applied voltage of 9V, the luminance of D-1 and D-2 were 7780 $cd/m^2$ and 6620 $cd/m^2$, respectively. The electroluminescent spectrum of each fabricated device showed peak emissions at the same two wavelengths: 508 nm and 596 nm. However, the relative intensity of 596 nm to 508 nm at those wavelengths was higher in the D-2 than in the D-1. The D-1 and D-2 devices showed maximum current efficiencies of 5.2 cd/A and 6.0 cd/A, and color coordinates of (0.31, 0.50) and (0.37, 0.48) on the Commission Internationale de I'Eclairage[CIE] chart, respectively.

Red Emission Properties of Organic EL Having Hole Blocking Layer (정공블록킹층을 설치한 유기 EL의 적색발광특성)

  • Kim, Hyeong-Gweon;Lee, Eun-Hak
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.17-23
    • /
    • 2000
  • In this study, we prepared red organic light-emitting-diode(OLED) with a fluorescent dye(Sq)-doped and inserted between emission and cathode layer 1,3-bis(5-p-t-butylphenyl)-1,3,4-oxadiazol-2-yl)benzene (OXD7) or/and tris(8-hydroxyquinoline) aluminum ($Alq_3$) layers for increasing electroluminescent(EL) efficiency. This inserting effect has been observed and EL mechanism characteristics have been examined. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl)-1,1'-diphenyl-4,4'-diamine (TPD), and the host and guest materials of emission layer is $Alq_3$ and bis[1-methyl-3,3'-dimethyl-2-indorindiylmethyl] squaraine (Sq), respectively. For the inserting of $Alq_3$, emission efficiency increased. But we can not obtained highly pure red emission owing to the emission of inserting $Alq_3$ layer. The inserting of OXD7 makes hole block and accumulate. Because of increasing recombination probability of electron and hole, highly pure red color can be held. Simultaneously brightness characteristics and emission efficiency could improve.

  • PDF

A High Voltage NMOSFET Fabricated by using a Standard CMOS Logic Process as a Pixel-driving Transistor for the OLED on the Silicon Substrate

  • Lee, Cheon-An;Jin, Sung-Hun;Kwon, Hyuck-In;Cho, Il-Whan;Kong, Ji-Hye;Lee, Chang-Ju;Lee, Myung-Won;Kyung, Jae-Woo;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.5 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • A high voltage NMOSFET is proposed to drive top emission organic light emitting device (OLED) used in the organic electroluminescent (EL) display on the single crystal silicon substrate. The high voltage NMOSFET can be fabricated by utilizing a simple layout technique with a standard CMOS logic process. It is clearly shown that the maximum supply voltage ($V_{DD}$) required for the pixel-driving transistor could reach 45 V through analytic and experimental methods. The high voltage NMOSFET was fabricated by using a standard 1.5 ${\mu}m$, 5 V CMOS logic process. From the measurements, we confirmed that the high voltage NMOSFET could sustain the excellent saturation characteristic up to 50 V without breakdown phenomena.

2-Wavelength Organic Light-Emitting Diodes by selectively doping of RP-411 in the Host of $Bebq_2$ ($Bebq_2$ 호스트에 RP-411을 선택 도핑한 2-파장 유기발광 다이오드)

  • Kim, Min-Young;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.23-26
    • /
    • 2011
  • New organic light-emitting diodes with structure of ITO/DNTPD/TAPC/$Bebq_2/Bebq_2$:RP-411/ET-137/LiF/Al using the selective doping of 5% RP-411 in a single $Bebq_2$ host in the two wavelength(green, red) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of $Bebq_2$, three kinds of devices with different thicknesses of 30${\AA}$, 40${\AA}$ and 50${\AA}$ in the doped emitter of $Bebq_2$:RP-411 were fabricated. The electroluminescent spectra showed two peak emissions at the same wavelengths of 511 nm and 622 nm for the fabricated devices. When the device with a 30${\AA}$-thick doped emitter is referred as "D-1", the device with a 40${\AA}$-thick doped emitter is referred as "D-2" and the device with a 50${\AA}$-thick doped emitter is referred as "D-3", the relative intensity of 622 nm to 511 nm at two wavelength peaks was higher in the D-2 and the D-3 than in the D-1. The devices of D-1, D-2 and D-3 showed the color coordinates of (0.43, 0.46), (0.46, 0.44) and (0.48, 0.43) on the CIE chart, respectively.

Study on the Emission Properties of Visible Light Source using Energy Transfer (에너지전달을 이용한 가시광 Light Source의 발광특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Ju-Seung;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1212-1217
    • /
    • 2004
  • Red organic electroluminescent (EL) devices based on tris(8-hydroxyquinorine aluminum) (Alq$_3$) doped with red emissive materials, 4-(dicyanomethylene)-2-t-butyl -6-(l,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB). poly(3-hexylthiophene) (P3HT). rubrene and 4-dicyanomethylene-2-methyl-6[2-(2,3.6.7-tetrahydro-lH,5H-benzo-[i,j]quinolizin-8yl)vinyl]-4H-pyran (DCM2) were fabricated for applying to the red light source, The photoluminescence (pL) intensities of red emissive materials doped in Alq$_3$ are limited by the concentration quenching with increasing the doping ratio and the doping concentration of DCJTB, DCM2, P3HT and rubrene measured at the maximum intensity showed 5, 1, 0.5 and 2 wt%, respectively. Time-resolved PL dynamic results showed that the PL lifetime of red emissive materials doped in Alq$_3$ were increased more than the value of material itself. It means that the efficient energy transfer occurred in the mixed state and Alq$_3$ is a suitable host materials for red emissive materials, The device which was used DCJTB as a dopant achieved the best result of the maximum luminance of 594 cd/$m^2$ at 15 V and showed the chromaticity coordinates of x=0,624, y=0,371.

The Fabrication an dCharacteristic Analysis with Novel High Efficiency Organic Polymer Green Electroluminescence (새로운 고효울 유기 폴리머 녹색발광소자의 제작 및 특성 분석)

  • Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.1-7
    • /
    • 2001
  • Single-layer polymer green electroluminescent devices were fabricated with novel material synthesis by using moleculely-dispersed TTA and NIDI into the polymer PC(B79) emitter layer doped with C6 fluorescent dye which has low operating voltage and high quantum efficiency. A EL cell structure of glass substrate/indium-tin-oxide/PC:TTA:NIDI:C6/Ca/Al was employed and compared with various low work function cathode electrodes Ca and Mg metals. By adjusting the concentration of the fluorescent dye C6, low turn-on voltage of 2.4V was obtained, maximum quantum efficiency of 0.52% at 0.08mole% has been improved by about a factor of ~50 times in comparison with the undoped cell. The PL and EL colors can't be turned by changing the concentration of the C6 dopant. PL emission peaking was obtained at 495nm and EL emission peaking at 520nm with FWHM ~70nm

  • PDF