• Title/Summary/Keyword: organic dye

Search Result 408, Processing Time 0.025 seconds

Organic Solvent Dyeing(II) -The Dyeing of PET by C. I. Disperse Violet 1 in Alkanes as Dyeing Media- (유기용매염색(II) -Alkane류를 염색매체로 한 C. I. Disperse Violet 1에 의한 PET 염색-)

  • 김태경;허재원;김병인;임용진
    • Textile Coloration and Finishing
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • In the prior study, we found that the dye uptakes of C. I. Disperse Violet 1 on PET in hexane and cyclohexane were higher than those in the other solvents. Therefore, in this study, the dye uptakes and the partition coefficients in alkanes having different number of carbon atoms were obtained and their relationship to the solubilities of the dye in alkanes was also investigated. As the number of carbon atoms of alkanes increases, solubility of the dye increases but the dye uptake decreases. This is due to the fact that the hydrophobicity of alkanes become relatively strong as increasing the number of carbon atoms. It was also found that the dye uptakes in iso-alkanes were larger than those in normal alkanes. This is because that the branched alkanes(iso-alkanes), judging from the tendency of lowering solubility and increasing dye uptake as decreasing the number of carbon atoms of alkanes, behave like the alkanes with less number of carbon atoms rather than the alkanes with the same number of carbon atoms. The logarithmic plot of the dye uptakes vs. the solubilities of the dye showed that the dye uptakes are linearly and inversely proportional to the solubilities. This is in good accordance with the results of the prior study. The heat of dyeing was also calculated from the equilibrium adsorptions at various temperatures. It seemed that the dyeings of PET by C. I. Disperse Violet 1 in nonane, decane, iso-pentane and iso-octane were rather endothermic processes. Dyeing rates in alkanes were somewhat delayed unlike general appearances in solvent dyeing.

  • PDF

Emission Properties of Red OELD with $Znq_2$ and dye (Znq2와 dye에 의한 적색 유기 전계 발광 소자의 발광특성)

  • Cho, M.J.;Choi, W.J.;Park, C.H.;Lim, K.J.;Park, S.K.;Kim, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1466-1468
    • /
    • 2001
  • For the full color organic electro-luminescent device, essentially, red, green, and blue emissions are required. But red emission is not to reach minimum level of practical use 31[lm/W]. In order to optimize color purity and power consumption requirements, it is important for the materials development efforts to search for improvements in red emission effisiency. In this study, the bis(8-oxyquinolino)zinc II ($Znq_2$) were synthesized successfully from zinc chloride($ZnCl_2$) as a initial material. Then, we fabricated red organic electroluminescent device with a dye(DCJTB)-doped and inserted $Znq_2$ between emission layer and cathode layer for increasing EL efficiency. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl) -1,1'-diphenyl-4.4'-diamine(TPD), and the host material of emission layer is $Znq_2$. For the inserting of $Znq_2$, efficiency increased.

  • PDF

Volatile organic compounds gas sensor using side polished optical fiber (측면 연마 광섬유를 이용한 휘발성 유기 화합물 가스센서)

  • Yeom, Se-Hyuk;Heng, Yuan;Lim, Jun-Woo;Kim, Hak-Rin;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.428-434
    • /
    • 2010
  • In this study, a novel gas sensor based on evanescent field coupling between single mode side polished fiber and solvatochromic dye dispersed polymer waveguide was demonstrated. We fabricated a side polished optical fiber device as a volatile organic compounds gas detector. Solvatochromic dye was coated on the top of the side polished optical fiber to take advantage of evanescent field coupling. The solvatochromism can be defined as the phenomenon whereby a compound changes color, either by a change in the absorption or emission spectra of molecule, when reacted in different VOCs. The device reacted to polarity gases like a hexane, butane, xylene etc. The resonance wavelength was shifted by the xylene concentration which range was 0.1 ppm ~ 100 ppm. Also, the response with the concentration was lineer and the detection limit was 0.1 ppb.

Studies on the Energy Transfer in LED Containing the Layer made of the Blends of Hole Transporting Polymer and Organic Phosphorescent Dye (정공전달고분자와 유기형광염료의 혼합물 박막이 이용된 발광소자의 에너지 전달특성 연구)

  • Kim, Eugene;Jung, Sook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1192-1198
    • /
    • 2004
  • Hole transporting polymer(poly[N-(p-diphenylamine)phenylmethacrylamide], PDPMA) was doped with nile red dye at various concentrations to study the influence of doping on the energy transfer during light emitting processes. Organic LEDs composed of ITO/blend(PDPMA -nile red)/ Alq$_3$/Al as well as thin films of blend(PDPMA -nile red)/ Alq$_3$ were manufactured for investigating photoluminescence, electroluminescence, and current-voltage characteristics. Atomic Force Microscopy was also used to observe surface morphology of the blend films. It was found that such doping. significantly influences the efficiency of the energy transfer from the Alq$_3$ layer to blended layer and the optical/electrical properties could be optimized by choosing the right concentration of the dye molecule. The results also showed a interesting correlation with the morphological aspect, i.e. the optimum luminescence at the concentration with the least surface roughness. When the concentration of nile red was 0.8 wt%, the maximum energy transfer could be achieved.

Dye removal from water using emulsion liquid membrane: Effect of alkane solvents on efficiency

  • Ghaemi, Negin;Darabi, Farzaneh;Falsafi, Monireh
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • Effect of different alkane based solvents on the stability of emulsion liquid membrane was investigated using normal alkanes (n-hexane, n-heptane, n-octane and n-decane) under various operating parameters of surfactant concentration, emulsification time, internal phase concentration, volume ratio of internal phase to organic phase, volume ratio of emulsion phase to external phase and stirring speed. Results of stability revealed that emulsion liquid membrane containing n-octane as solvent and span-80 (5 % (w/w)) as emulsifying agent presented the highest amount of emulsion stability (the lowest breakage) compared with other solvents; however, operating parameters (surfactant concentration (5% (w/w)), emulsification time (6 min), internal phase concentration (0.05 M), volume ratio of internal phase to organic phase (1/1), volume ratio of emulsion phase to external phase (1/5) and stirring speed (300 rpm)) were also influential on improving the stability (about 0.2% breakage) and on achieving the most stable emulsion. The membrane with the highest stability was employed to extract acridine orange with various concentrations (10, 20 and 40 ppm) from water. The emulsion liquid membrane prepared with n-octane as the best solvent almost removed 99.5% of acridine orange from water. Also, the prepared liquid membrane eliminated completely (100%) other cationic dyes (methylene blue, methyl violet and crystal violet) from water demonstrating the efficacy of prepared emulsion liquid membrane in treatment of dye polluted waters.

Intercalation of Functional Organic Molecules with Pharmaceutical, Cosmeceutical and Nutraceutical Functions into Layered Double Hydroxides and Zinc Basic Salts

  • Hwang, Seong Ho;Han, Yang Su;Choe, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1019-1022
    • /
    • 2001
  • Negatively charged functional organic molecules such as retinoic acid, ascorbic acid, indole acetic acid, citric acid, salicylic acid, acidic dye (indigo carmine, Food Blue 1) are intercalatively encapsulated by zinc basic salt (hydrozincite) and layered double hydroxide. Such functional organic-inorganic nanohybrids are realized via coprecipitation reaction involving simultaneous formation of layered inorganic lattice and intercalation of anionic species. The heterostructural nature of these nanohybrids, their particle morphology and textural characterizations are mainly discussed on the basis of Powder X-ray Diffraction and Field Emission Scanning Electron Microscopy results.

Microcavity-enhanced White OLED for efficient lighting application

  • Chin, Byung-Doo;Kim, Jae-Kyeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1591-1594
    • /
    • 2006
  • In this work, we fabricated efficient white organic light emitting device (WOLED) by the stack of complementary fluorescent dye-doped layers, Effect of dye-doping ratio and thickness of each layers on WOLED efficiency and emission spectrum was investigated. Moreover, out-coupling efficiency enhancement using microlens array was analyzed for bottom and top-emitting device architecture, leading to higher light extraction properties.

  • PDF

Synthesis and Photovoltaic Properties of Organo Dendritic Photosensitizers based on Carbazole for Dye-sensitized Solar Cells (신규 Carbazole 유도체의 합성과 이를 적용한 DSSC의 광전 변환 특성)

  • Jung, Daeyoung;Kim, Myeongseok;Yang, Hyunsik;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.119.1-119.1
    • /
    • 2011
  • Since Gratzel et al. reported the first efficient dye-sensitized solar cells(DSSCs) in 1991, they have attracted much attention due to their relatively high power conversion efficiency and potentially low cost production. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, the metal-free organic photosensitizers are strongly desired. The metal-free organic dyes offer superior molar extinction coefficients, low cost, and diverse molecular structures as compared to the conventional Ru-dyes, In this work, we have studied on the synthesis and characterization of the organo dendritic dyes containing different number of electron acceptor moieties in a molecule.

  • PDF