• Title/Summary/Keyword: organic content

Search Result 3,963, Processing Time 0.034 seconds

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

A Research on Predicting Biogas Production of Organic Waste in Island Region (도서지역 유기성 폐기물 성분분석을 통한 바이오가스 발생량 예측에 관한 연구)

  • Park, Jae Young;Moon, Jin Young;Hwang, Young Woo;Kwak, In Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.45-52
    • /
    • 2016
  • This study is to predict the biogas production and the content analysis of the organic wastes of three islands located in the City of I. Content analysis for a total of six sections, including pH, BOD, COD, three components (Moisture, Ash, Combustibles)was conducted on the specimens of organic wastes from the representative spots of three islands. From the analysis result of organic waste, it is confirmed that more than $1,750,000m^3$ of methane gas per year will be generated through the calculation of the total methane generation for the COD value. Therefore, if the incineration facility for the organic waste in island region is converted into a biogas production facilities which is non-incineration facility, it seems that the organic waste of efficient utilization is available.

Effects of organic fertilizers mixed with dehydrated food waste powder on agronomic performance of leafy vegetables

  • Jae-Han, Lee;You-Jin, Choi; Jin-Hyuk, Chun;Yun-Gu, Kang;Yeo-Uk, Yun;Taek-Keun, Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.397-405
    • /
    • 2022
  • Castor oil cake is widely used as a raw material for organic fertilizers (OF) in Korea. Compared to other fertilizer raw materials, it is highly dependent on imports. In terms of replacing raw materials, dehydrated food waste powder (FDP) and castor oil cake have similar nutritional content, and if 30% is replaced, about 20% of the raw material cost can be saved. However, few studies on the effects on crop growth and soil properties when organic fertilizer and dry food waste powder are mixed and applied to the soil have been reported. The effects of an organic fertilizer made by mixing the commercial available organic fertilizer with dehydrated food waste (OF + FDP) on soil properties and the growth of two types of leafy vegetables (lettuce and young radish) were evaluated and compared with the performance of OF. The fresh weights of lettuce and young radish were the highest with OF amendment and stood at 114.3 and 119.0 g·plant-1, respectively. These were followed by OF + FDP amendment, which produced 103.1 and 109.6 g·plant-1, respectively. Compared to the control, OF and OF + FDP increased the lettuce fresh weights by about 69% and 52%, respectively, while the fresh weights of the radish were increased by about 223% and 207%, respectively. The soil pH, EC, total carbon content, and organic matter content in OF and OF + FDP increased. The mixture of dehydrated food waste powder and organic fertilizers is expected to improve soil quality and facilitate stable production of crops and contribute to the substitution of imported organic fertilizer raw materials.

Physiological and Biochemical Responses of Fifteen Rice Cultivars to UV-B Radiation

  • Sung Jwa-Kyung;Chung Jong-Wook;Lee Sang-Min;Lee Yong-Hwan;Choi Du-Hoi;Kim Tae-Wan;Song Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • This study was conducted to examine the physiological and biochemical responses against UV-B radiation in the seedling of 15 different rice cultivars, having the different physiological sensitivities. Out of 15 rice cultivars tested, moderate and susceptible groups showed significant decreases in biomass and RGR (relative growth rate). Contents of total chlorophyll were reduced remarkedly by irradiation of UV-B. In all rice cultivars tested, the content of chlorophyll a was strongly decreased, while the contents of chlorophyll b were slightly reduced without showing clear different among three groups and 15 cultivars. Carotenoid content was largely reduced by UV-B radiation, whereas polyamine content was moderately increased. The contents of MDA (malondialdehyde) that reflect the level of lipid peroxidation of cell membranes were clearly increased by UV-B stress, showing higher content in susceptible cultivars than moderate and torelant cultivars. The physiological important parameters highly related to visible injury were leaf color, chlorophyll, carotenoid, and lipid peroxidation, whereas biomass and polyamines were not closely correlated. Based on this results, it was concluded that changes of visible injury and the contents of chlorophyll and MDA could be adequately applied and utilized as physiological indicators to UV-B radiation.

The Effect of Water Content on Hen Egg lysozyme Extraction using Reversed Micelles and Pressurized Carbon Dioxide (가압 이산화탄소와 역미셀을 이용한 난백 lysozyme의 추출에 대한 수분함량의 영향)

  • 박선영;전병수
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.202-206
    • /
    • 2003
  • A study of hen egg lysozyme extraction using reversed micelles and pressurized CO₂ phase was conducted. The relationship between the lysozyme extraction and water content (W/sub 0/) under the pressurized CO₂ conditions was investigated. The water content of the micellar organic phase was a significant parameter affecting the mass transfer of protein and enzymatic activity in reversed micellar process. It was found that the reversed micelles in the organic phase with pressurized CO₂ were larger than the organic phase without CO₂. Therefore, the extractionrate of lysozyme in the interface of the aqueous phase and the organic phase was increased. W/sub 0/ value was increased at the high surfactant concentration and the extraction rate of lysozyme was enhanced.

Free Sugar and Organic Acid in the Fruit of Hawthorn (Crataegus pinnatifida Bunge) Selected Clones as Honey Plant in Korea

  • Park, Youngki;Kim, Jae-Hee
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.297-301
    • /
    • 2018
  • Hawthorn is widely distributed in Korea and has been used as herbal medicine for treating various cardiovascular disease, arteriosclerosis and hypertension in Korea. In order to select superior honey tree plant from Korea, the free sugar and organic acid in hawthorn fruits, including five Korean clones and four Chinese cultivars, were evaluated. We also compared these hawthorn fruits of five clones (selected from different area of Korea) with Chinese hawthorn cultivars. Glucose, galactose, fructose and sucrose were the major sugar components of hawthorn. In this study, we observed that sucrose, glucose and fructose content. The highest sucrose content of hawthorn fruit was 188.12g/100g in Daegeumseong cultivar. The sweetness index, which plays important role of taste, was also calculated from the content of sucrose, glucose and fructose. The contribution of each carbohydrate was calculated, based on the fact that fructose is 2.30 and sucrose 1.35 times sweeter than glucose. The highest sweetness of hawthorn fruit was 579.52 in Pocheon clone. Main organic acid detected in hawthorn fruit were citric acid, malic acid and shikimic acid. The highest citric acid and malic acid content in hawthorn fruit were 157.50g/100g (Pocheon 3) and 34.12g/100g (Daegeumseong), respectively. The results of this study would be helpful for using food and functional food products, due to the beneficial effects of free sugar and organic acid for human health such as antioxidants and anticarcinogenic properties.

지중오존산화시 토양유기물질과 수분이 토착미생물의 생존과 재성장에 미치는 영향

  • 손규동;정해룡;최희철;김수곤;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.334-337
    • /
    • 2003
  • This study was carried out to investigate the effect of soil properties, such as soil organic matter(SOM) content and water content on die-off and regrowth of indigenous microbes due to in-situ ozonation. Four different soils were collected and the soil samples applied to different ozonation time(0-360 min) were incubated during 4 weeks. Population of the indigenous microbes was monitored during incubation period. The number of indigenous microbes in all samples dramatically decreased (more than 90%) within 30 minutes of ozone injection. With increased ozonation time by 360 minutes, the number of the indigenous microbes decreased by 99.99% in all samples. Die-off of the indigenous microbes due to ozone treatment was inversely proportional to SOM and water content. Especially, sample 3 and Sample 4 containing relatively high SOM content and water content showed high regrowth rate, and this resulted from the increase of water soluble and biodegradable organic fraction in soil water after ozone treatment. Soil sample ozonated for 360 minutes showed minor increase in microbial population during 4 weeks of incubation period.

  • PDF

Changes of Soluble Solid Content in Red Pepper by Different Extraction Conditions (추출 조건에 따른 고추 수용액의 가용성 성분의 변화)

  • Lee, Hyun-Duck;Lee, Cherl-Ho
    • Journal of the Korean Society of Food Culture
    • /
    • v.11 no.3
    • /
    • pp.385-392
    • /
    • 1996
  • The soluble solid of red pepper was extracted by water in order to investigate changes of soluble solid content by different extraction temperature $(4{\sim}90^{\circ}C)$ and time $(1/2{\sim}3\;hrs)$, and the contents of carotenoid, capsaicinoids, free sugar, organic acid, free amino acid in soluble solid were measured. Most of soluble solid in red pepper was extracted within the first 2 hrs and $93{\sim}98%$ of total soluble solid was extracted during the first 30 min. The contents of carotenoid increased by increasing extraction time and temperature, but decreased by increasing extraction time at $60^{\circ}C$ and $90^{\circ}C$. ${\beta}$-carotene content was sharply decreased after 2 hrs at $90^{\circ}C$. The content of capsaicinoid was sharply increased between 1 hr and 2 hr. Fructose and glucose in red pepper were extracted in the range of $83.8%{\sim}96.4%$ and the contents of free sugar gradually increased by increasing extraction time and temperature. The content of organic acid was gradually increased by increasing extraction time and temperature and the greatest amount of organic acid was extracted during the first 30 min of extraction time. The content of free amino acid was decreased by increasing extraction temperature.

  • PDF

Effect of Soil Organic Matter Content and Nutrition Elements on Yield of Potato

  • Park, Young-Bae;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.303-305
    • /
    • 2011
  • A study of different levels of Nutrition Elements and the chemical properties of the soil was conducted to determine the yield performance of potato. Application of sulfur, potassium, and Magnesium significantly affected final height, dry matter content, and crispiness of potato. The final pH, organo-nitrogen, phosphorus, potassium, and magnesium content in the soil were significantly affected by S-K-Mg application.

Effects of Water and Silica Gel on Enzyme Agglomeration in Organic Solvents

  • Keehoon Won;Lee, Sun-Bik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.150-155
    • /
    • 2001
  • It has been observed that water, which is absolutely essential for enzyme activity, can induce the agglomeration of enzyme particles in organic media. Although enzyme agglomeration is significant in that it usually reduces enzyme activity and stability, little attention has been paid to the quantitative analysis of enzyme agglomeration behavior in nonaqueous biocatalytic systems. In this study, the effect of water and silica gel on enzyme agglomeration were investigated using Candida rugosa lipase and cyclohexane as a model enzyme and an organic medium. The extent of enzyme agglomeration was quantified by sieve analysis of freeze-dried agglomerates. Increasing the water content of the medium increased the size of the enzyme agglomerates, and it was found that water produced during the esterification reaction could also promote the agglomeration of enzyme particles suspended in organic media. On the other hand, the size of the enzyme agglomerates was remarkably reduced in the presence of silica gel at the same water content. We also show that this increase in the size of enzyme agglomerates results in lower reaction rates in organic solvents.

  • PDF