• Title/Summary/Keyword: organic content

Search Result 3,963, Processing Time 0.033 seconds

Mineral Nutrition of Field-Grown Rice Plant -II Recovery of fertilizer nitrogen, phosphorus, and potassium in relation to climatic zone and physical or chemical characteristics of soil profile (포장재배(圃場栽培) 수도(水稻)의 무기영양(無機營養) -II 삼요소(三要素) 이용율(利用率)과 기상권(氣象圈) 및 토양단면(土壤斷面)의 물리(物理)·화학적(化學的) 성질(性質)과의 관계(關係))

  • Park, Hoon;Shin, Chun Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.17-26
    • /
    • 1973
  • A survey on nutrient recovery by rice plant was carried out countrywide in 1967 and 1968. The relationships between percent recovery of fertilizer nutrient and climatic zone or deposition mode, drainage grade, and texture of paddy soil profile, or chemical characteristics of surface soil were as follows. 1. The percent recovery of fertilizer nitrogen was highest in south and least in north, and that of potassium was highest in south and least in middle climatic zone. 2. Since the percent recovery of Phosphorus variates yearly with climatic zone, mode of deposition drainage grade or soil texture, it seemed to depend greatly on soil-weather interaction. 3. Nitrogen recovery was highest in alluvial colluvial (AC) and it was followed by alluvial (A), fluvomarine (FM) and old alluvial in decreasing order while potassium recovery was OA>AC>A>FM. 4. The greater the drainage was, the higher the nitrogen recovery. The recovery of potassium and phosphorus tended to show high in moderately well drain, and low in poorly and well drain. 5. Nitrogen recovery was highest in fine silty and gradually decreased with coarseness. That of potassium or phosphorus was greater in those below fine loamy than in those above coarse silty. 6. Nitrogen recovery was high in Jisan, Geugrag, and Sindab series, and low in Hwadong, Gyuam, Yongji and Hwabong series. 7. Nitrogen recovery showed significant positive correlation with the content of organic matter (OM), Ca, CEC of surface soil and only in the year of high phosphorus recovery it had significant negative correlation with soil phosphorus. Phosphorus recovery had significant posititive correlation with CEC, Mg or Ca. 8. Potassium recovery showed negative correlation with K/(Ca+Mg), P, OM or K while positive correlation with Ca, Mg, CEC but significant only with K/(Ca+Mg) in the year of low potassium recovery. In the year of high K recovery it showed positive correlation with P, OM, K/(Ca+Mg) or K while negative with CEC, Mg or Ca but significant only with P, OM or CEC. Soil potassium has significant positive correlation with soil OM and P only in the year of low potassium recovery. 9. The percent recovery of N, P or K showed negative correlation coefficient with pH without significant. 10. There was significant positive correlation between OM and P, K or K/(Ca+Mg), P and K or K/(Ca+Mg), K and K/(Ca+Mg), Mg or CEC, Ca and K/(Ca+Mg), Mg, CEC or pH, Mg and CEC while significant negative correlation between Mg and OM, P or K/(Ca+Mg), P and CEC, Ca and K/(Ca+Mg). 11. From the percent rcovery of fertilizer and soil chemical characteristics it was known that soil organic matter increase nitrogen uptake, that K uptake has closer relation to K/(Ca+Mg) than K, that Mg affects P ugtake, and that the annual difference of P and K recovery was partly explainable.

  • PDF

Quality characteristics of rice and rice starch-based Yakju (쌀 및 쌀 전분을 활용한 약주의 품질특성)

  • Kang, Ji-Eun;Kim, Jae-Woon;Choi, Han-Seok;Kim, Chan-Woo;Yeo, Soo-Hwan;Jeong, Seok-Tae
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2015
  • Yakju, a Korean traditional alcoholic beverage, is made from rice and Nuruk. In this study, the fermentation characteristics of Yakju was investigated using rice and rice starch. Ingredients was classified into raw material (rice, rice starch) and starter (enzyme supplements, modified Nuruk, traditional Nuruk, and yellow rice koji) for fermentation. The crude protein content of rice, rice starch, and starter were determined as follows (%): rice 6.69, rice starch 0.44, enzyme supplements 7.84, modified Nuruk 15.29, traditional Nuruk 14.28, and yellow rice koji 7.28. The alcohol content of rice with traditional Nuruk ($20.13{\pm}0.12%$) was higher than other Yakju. The concentration of organic acids of rice starch-based Yakju (389.83~538.34 mg%) was higher than that of rice Yakju (259.27~357.70 mg%). The concentration of nitrogen compound of rice Yakju (498.38~5976.93 ppm) was higher than that of rice starch-based Yakju (600.43~4463.79 ppm). In line with these findings, further studies will be necessary for the quality analysis of the rice, rice starch and fermented starter (enzyme supplements, modified Nuruk, traditional Nuruk and yellow rice koji).

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF

Sensory properties of Satsuma mandarin by quantitative descriptive analysis (감귤의 묘사적 관능 특성)

  • Ku, Kyung Hyung;Lee, Kyung-A;Choi, Jeong Hee
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.241-250
    • /
    • 2015
  • This study investigated the sensory attributes of Satsuma mandarins to provide basic data for the establishment of a quality grade establishment of mandarins. Samples of the mandarins in different sizes (small, medium, and large) were collected via organic green house cultivation, conventional cultivation without pesticides and conventional cultivation in Jeju Island. Eight trained panels performed the triplicate measurements. From the results of the quantitative descriptive analysis, mandarin samples were selected with five types of appearances (gloss intensity, color intensity, peel width, damage degree, and peel texture), three types of odors (sour, sweet, fresh), six types of tastes (sour, sweet, bitter, fresh, tasteless, and off flavor) four types of texture (hardness, granule toughness, juicy, and tough feel), and three types of after-tastes (sour, sweet, and bitter). The results of the analysis of the quality characteristics of the samples showed that their, pH, total acidity and solids contents differed depending on the size of the samples more than their cultivation methods. The correlation coefficients between the quality properties of the mandarins showed that their, sample size was positively correlated with their peel width and toughness. Moreover, the soluble solid of sample was positively correlated with its color intensity, sweet and fresh orange flavor. However, soluble solid content of the samples was negatively coreelated with their bitter flavor, tastelessness, and off flavor. In the principal component analysis of the sensory attributes data, PC1 represented the soluble solid, gross intensity, orange color, sour and sweet odor, unique mandarin flavor (sweet and, fresh orange), etc., and PC2 (26.77%) the size, pH, sample acidity, and peel texture.

Comparison of Tyurin Method and Dry Combustion Method for Carbon Analysis in Soils of Low Iorganic Carbon content (무기탄소 함량이 낮은 토양의 탄소함량 분석을 위한 Tyurin법과 건식연소법의 비교)

  • Seo, Myung-Chul;So, Kyu-Ho;Ko, Byong-Gu;Son, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.315-321
    • /
    • 2004
  • To compare soil carbon contents by Tyurin method and dry combustion method, we carried out analysis for 212 samples of agricultural land in Korea. The average values of soil carbon contents analyzed by Tyurin method and dry combustion method were $17.47{\pm}10.80$ and $19.91{\pm}10.63g\;kg^{-1}$, respectively. Both methods were evaluated as acceptable methods for soil carbon contents as the results showed. The results showed that soil texture had little effect on analysis method of carbon contents. Highly significant linear regression equation, Y = 0.846X ($R^2=0.991$), was obtained between carbon contents analyzed by Tyurin method (Y) and dry combustion method (X). As a result of comparison with data of carbon contents of the two methods, about 69% of results at dry combustion method have exceeded to results at Tyurin method. Especially, differences between results at two methods became higher as carbon contents were increasing. Tyurin method has been advantages such as shorter analysis time for one sample, more recognition for carbon analysis, and no need for expensive analyzer, while dry combustion method has simpler procedure, no heavy metal wastes, and more samples for analysis at one time.

Origin of limestone conglomerates in the Choson Supergroup(Cambro-Ordovician), mid-east Korea

  • Kwon Y.K.;Chough S.K.;Choi D.K.;Lee D.J.
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.63-65
    • /
    • 2001
  • The Chosen Supergroup (Cambro-Ordovician), mid-east Korea consists mainly of shallow marine carbonates and contains a variety of limestone conglomerates. These conglomerates largely comprise oligomictic, rounded lime-mudstone clasts of various size and shape (equant, oval, discoidal, tabular, and irregular) and dolomitic shale matrices. Most clasts are characterized by jigsaw-fit (mosaic), disorganized, or edgewise fabric and autoclastic lithology. Each conglomerate layer is commonly interbedded with limestone-dolomitic shale couplets and occasionally underlain by fractured limestone layer, capped by calcareous shale. According to composition, characteristic sedimentary structures, and fabric, limestone conglomerates in the Hwajol, Tumugol, Makkol, and Mungok formations of Chosen Supergroup can be classified into 4 types: (1) disorganized polymictic conglomerate (Cd), (2) horizontally stratified polymictic conglomerate (Cs), (3) mosaic conglomerate (Cm), and (4) disorganized/edgewise oligomictic conglomerate (Cd/e). These conglomerates are either depositional (Cd and Cs) or diagenetic (Cm and Cd/e) in origin. Depositional conglomerates are interpreted as storm deposits, tidal channel fills, or transgressive lag deposits. On the other hand, diagenetic conglomerates are not deposited by normal sedimentary processes, but formed by post-depositional diagenetic processes. Diagenetic conglomerates in the Chosen Supergroup are characterized by autoclastic and oligomictic lithology of lime-mudstone clasts, jigsaw-fit (mosaic) fabric, edgewise fabric, and a gradual transition from the underlying bed (Table 1). Autoclastic and oligomictic lithologies may be indicative of subsurface brecciation (fragmentation). Consolidation of lime-mudstone clasts pre-requisite for brecciation may result from dissolution and reprecipitation of CaCO3 by degradation of organic matter during burial. Jigsaw-fit fabric has been considered as evidence for in situ fragmentation. The edgewise fabric is most likely formed by expulsion of pore fluid during compaction. The lower boundary of intraformational conglomerates of depositional origin is commonly sharp and erosional. In contrast, diagenetic conglomerate layers mostly show a gradual transition from the underlying unit, which is indicative of progressive fragmentation upward (Fig. 1). The underlying fractured limestone layer also shows evidence for in situ fragmentation such as jigsaw-fit fabric and the same lithology as the overlying conglomerate layer (Fig, 1). Evidence from the conglomerate beds in the Chosen Supergroup suggests that diagenetic conglomerates are formed by in situ subsurface fragmentation of limestone layers and rounding of the fragments. In situ subsurface fragmentation may be primarily due to compaction, dewatering (upward-moving pore fluids), and dissolution, accompanying volume reduction. This process commonly occurs under the conditions of (1) alternating layers of carbonate-rich and carbonate-poor sediments and (B) early differential cementation of carbonate-rich layers. Differential cementation commonly takes place between alternating beds of carbonate-rich and clay-rich layers, because high carbonate content promotes cementation, whereas clay inhibits cementation. After deposition of alternating beds and differential cementation, with progressive burial, upward-moving pore fluid may raise pore-pressure in the upper part of limestone layers, due to commonly overlying impermeable shale layers (or beds). The high pore-pressure may reinforce propagation of fragmentation and cause upward-expulsion of pore fluid which probably produces edgewise fabric of tabular clasts. The fluidized flow then extends laterally, causing reorientation and further rounding of clasts. This process is analogous to that of autobrecciation, which can be analogously termed autoconglomeration. This is a fragmentation and rounding process whereby earlier semiconsolidated portions of limestone are incorporated into still fluid portions. The rounding may be due mainly to immiscibility and surface tension of lime-mud. The progressive rounding of the fragmented clasts probably results from grain attrition by fluidized flow. A synthetic study of limestone conglomerate beds in the Chosen Supergroup suggests that very small percent of the conglomerate layers are of depositional origin, whereas the rest, more than $80\%$, are of diagenetic origin. The common occurrence of diagenetic conglomerates warrants further study on limestone conglomerates elsewhere in the world.

  • PDF

Investigation of Relationships between Soil Physico-chemical Properties and Topography in Jeonbuk Upland Fields (전북지역 밭 토양의 지형별 물리화학적 특성)

  • Ahn, Byung-Koo;Lee, Jae-Hyoung;Kim, Kab-Cheol;Choi, Dong-Chil;Lee, Jin-Ho;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • The properties of upland soils are much more dependent upon topography than those of paddy soils, and they give us very useful information to manage the upland fields. Therefore, we investigated the selected physical and chemical properties of upland soils at 84 and 150 topographic sampling sites, respectively. The topographic sites included 34.7% of local valley and fans, 18.7% of hilly and mountains, 20.0% of mountain foot slopes, 14.0% of alluvial plains, 8.0% of diluvium, and 4.6% of fluvio-marine deposits. Based on the investigation, soil textures in Jeonbuk upland fields were mostly sandy loam, sandy clay loam, clay loam, and clay soils, especially sandy clay loam soils were evenly distributed in all of the topographic sites. Soil slopes in the sites ranged from 0 to 15%, which showed an optimal condition for farm land. Soil bulk density and compaction values were from 1.19 to 1.24 g $cm^{-3}$ and from 12.1 to 13.9 mm, respectively. As comparing with the optimal conditions of soil chemical properties for upland soils proposed by National Institute of Agricultural Science and Technology, Korea, 37%, 42.7%, 93.0% of the sites were within optimum levels with soil pH, content of soil organic matter, and electrical conductivity, respectively. However, 64.0%, 47.3%, 48.7%, and 42.7% of the upland soils contained excess levels of exchangeable K, Ca, and Mg, and available phosphorus, respectively. In addition, the contents of heavy metals, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, in the Jeonbuk upland soils were much less than threshold levels.

Polycyclic Aromatic Hydrocarbons in Industrial Organic Sludge from Wastewater Treatment Facilities in Korea (폐수처리시설에서 발생된 유기성 슬러지에 함유된 다환방향족탄화수소의 농도 특성)

  • Nam, Seong-Nam;Lee, Mi-Young;Yeon, Jinmo;Jeon, Taewan;Shin, Sun Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.574-582
    • /
    • 2012
  • This study presents the concentrations of the polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by United States Environmental Protection Agency (US EPA), in 98 sludges from 54 industrial wastewater treatment facilities of South Korea. The mean concentrations of ${\Sigma}_{16}PAHs$ were ranged from 32.5 ${\mu}g/kg-dw$ to 1189.3 ${\mu}g/kg-dw$ by industries, and the highest content was found in the petrochemical industry, followed by chemical, clothing manufacturing and dying, pulp and papermaking, secondary wastewater treatment, and food/beverage producing industries. Comparisons to the EU and Danish standards of ${\Sigma}_{16}PAHs$ in sewage sludge for land application showed only two samples (one from petrochemical, and the other from chemical industry) exceeded the limits. ANOVA test with PAH concentrations as variables revealed no statistically significant influences by industrial types and sampling time (i.e., seasonal variations). Pearson correlations between individual PAHs showed strong relationships (r>0.7) among 4-ring PAHs. Concentrations of acenaphthylene, anthracene, fluoranthene, benzo(a)anthracene, benzo(f)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene presented strong correlations to ${\Sigma}_{16}PAHs$. Principal component analysis discriminated entire samples into three groups by two principal components (PC1 and PC2) with 70% of data variations, in which industrial types were not of importance, but a dominance of certain PAHs. Samples in group-I, which is high PC1 and low PC2, were characterized by a dominance of 2-ring PAHs, and in group-II, PC1 and PC2 showed a linear relation, was dominant 4-ring PAHs. Group-III with low PC1 and high PC2 includes 17 samples showing a noticeably high contribution of 3-ring PAHs to ${\Sigma}_{16}PAHs$. This study provides concentrations of PAHs in industrial sludges collected from a wide variety of sources (six industrial types) and two seasons of sampling events, and the comparison of ${\Sigma}_{16}PAHs$ with other studies are also discussed.

An Analysis of Growth Status and Soil Environment in Camellia japonica L. Forest at Jeolla-province Natural Monuments (동백나무 숲의 생육현황 및 토양환경 분석 - 전라도 지방 천연기념물 동백나무 숲을 중심으로 -)

  • Lee, Won-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, based on a natural monument forest research by Camellia japonica L. Forest appointed as a natural monument located environment and growth environment and the soil environment, Camellia japonica L. Forest soil in order to analyze effects of soil in Camellia japonica L. Forest correlation analysis the results can be summarized as follows: First, a natural monument Camellia japonica L. forest located on the foot of a mountain valley or within the stream, a lot of sunshine southeast, east, and south in the direction of the share due to external factors, making it a good, but, $15{\sim}30^{\circ}$ of distributed in the soil slopes in the slope there is a risk of loss are appearing. Second, the growth of the Status of Camellia japonica L. forest represents the distribution of the uneven-aged forest diameter class. but increases the density of the upper forest trees Camellia japonica L. occurred in lower saplings do not have growth. The width of crown diameter class caused a narrow oppressed tree, the average tree height in the 8.09m, camellia in common was lower than that of tree height, variation diameter class in the width of crown distribution severe low correlations were analyzed. Third, the natural monument Camellia japonica L. forest soil composition, properties of soil pH, etc. 10 entries were analyzed components of the soil. In summary analysis properties of soil, soil pH, calcium, organic matter, magnesium was good and potassium content was insufficient, nitrogen and phosphorus were excess. Fourth, the growth condition of Camellia japonica L. forest and soil physicochemical properties, the results of the correlation analysis. magnesium, calcium, nitrogen affects the growth of Camellia japonica L. forest. Other seven kinds of items showed no effect on growth. Current Status and Future Growth of Camellia japonica L. forest soil and soil environments as well as the relationship between, Camellia Forest Factors affecting the growth of the state in terms of long-term ecological research and conservation status of settled Camellia japonica L. forest research for building materials there will be continued.