• Title/Summary/Keyword: organic content

Search Result 3,965, Processing Time 0.028 seconds

Preparation and Quality Characteristics of Yogurt Added with Saururus chinensis (Lour.) Bail (삼백초를 첨가한 요구르트의 제조와 품질 특성)

  • Lee, In-Seon;Lee, Syng-Ook;Kim, Hyun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.411-416
    • /
    • 2002
  • Yogurt base was prepared from whole milk and skim milk added with 0.2∼1.0% (w/v) of Saururus chinensis(Lour.) Bail water extract (SCe) and fermented with lactic acid bacterias (the mixed strain of Streptococcas themophilus and Lactobacillus bulgaricus) at 37$\^{C}$ for 24 hr. Quality characteristics of the yogurt were evaluated in terms of acid production, number of viable cells, viscosity and sensory property during lactic acid fermentation. The composition of organic acids was also measured by HPLC. Addition of SCe stimulated the growth of lactic acid bacteria and remarkably enhanced the acid production. The viscosity and lactic acid content of yogurt were also increased by addition of SCe. The sensory score of yogurt added with 0.4% of SCe was significantly higher than other groups in taste and overall acceptability The storage abilities of yogurts added with SCe were relatively good at 5$\^{C}$ for 15 days.

Bacillus ginsengihumi sp. nov., a Novel Species Isolated from Soil of a Ginseng Field in Pocheon Province, South Korea

  • Ten Leonid N.;Im Wan-Taek;Baek Sang-Hoon;Lee, Jung-Sook;Oh, Hee-Mock;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1554-1560
    • /
    • 2006
  • A Gram-positive, aerobic or facultative anaerobic, non motile, endospore-forming bacterial strain, designated Gsoil $114^T$, was isolated from a soil sample of a ginseng field in Pocheon Province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium and utilized a limited number of organic substrates as sole carbon sources, including D-xylose and some other carbohydrates, but did not utilize L-amino acids and organic acids. The isolate was positive for oxidase test but negative for catalase, and negative for degradation of macromolecules such as starch, cellulose, xylan, casein, chitin, and DNA. The G+C content of the genomic DNA was 41.8 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $anteiso-C_{15:0}$ (32.1%), $iso-C_{15:0}$ (30.5%), and $anteiso-C_{17:0}$ (30.2%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil $114^T$ fell within the radiation of the cluster comprising Bacillus species and joined Bacillus shackletonii LMG $18435^T$ with a bootstrap value of 95%. The highest 16S rRNA gene sequence similarities were found with Bacillus shackletonii LMG $18435^T$ (97.6%), Bacillus acidicola DSM $14745^T$ (96.9%), Bacillus sporothermodurans DSM $10599^T$ (96.5%), and Bacillus oleronius DSM $9356^T$ (96.5%). The phylogenetic distance from any other validly described species within the genus Bacillus was less than 96%. DNA-DNA hybridization experiments showed that the DNA-similarities between strain Gsoil $114^T$ and closest phylogenetic neighbors were less than 39%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $114^T$ (=KCTC $13944^T$=DSMZ $18134^T$) was classified in the genus Bacillus as the type strain of a novel species, for which the name Bacillus ginsengihumi sp. nov. is proposed.

Study on Reutilization with Aerobic Microbes of Organic Food Waste Leachates (호기성 미생물을 이용한 음폐수의 처리 및 자원화에 관한 연구)

  • Kang, Bo-Mi;Hwang, Hyeon-Uk;Kim, Ji-Hoon;Yang, Yong-Woon;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • This test established the bioavailability and sample input by mixing the maintaining the microbial machine parts and food waste leachates in weight of 2:1 as advanced experiment, maintaining the constant temperature, agitating and observing its weight and property change for 60 hours. And, I injected daily the established microbial machine parts and food waste leachates rate, maintained the temperature in the reactor with $55{\sim}65^{\circ}C$, and agitated with constant speed. I studied the recycling possibility of food waste leachates by extracting the sample after 24 hours, verifying its characteristics, and repeating the food waste leachates input and sample extraction for about 40 days. Considering all about the results of this study, I saw that 87.32% of food waste leachates was reduced, and the solid of bluebug or food included in the food waste leachates was decomposed within 24 hrs. pH for 43 days after 9 days of stabilization period was maintained from 3.7~3.9 and the ignition loss from 88.67~87.3%, and the quantity of organic matter from 77.6~80.88%. With the similar result daily maintained, it is considered to progress more the minimization by inputting the future food waste leachates. C/N rate satisfies the less than 25 that is the composting basis within 8 days, maintaining between 13~15, with 2% of salt not exceeded, it is able to recycle as the compost of food waste leachates as based on the composting with no extracted heavy metal content.

Solubilization of Dairy Sludge using Ultrasonic Pretreatment (초음파를 이용한 유가공 슬러지의 가용화)

  • Moon, Sang Jae;Jeon, Byeong Cheol;Choi, Jin Taek;Nam, Se Yong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.244-248
    • /
    • 2017
  • The effects of ultrasonic (1.2~1.7 kJ/g TS) pretreatment on the solubilization of dairy and livestock sludge were separately evaluated to investigate the possibility of recycling dairy sludge as a potential source of organic carbon. Compared to other industrial wastewater and sewage sludge, dairy sludge has higher organic matter content and no toxic materials. The solubilization rates of dairy and livestock sludge, at a specific energy input of 1.7 kJ/g TS, were 14.5% and 10.6%, respectively. After the 90-minute ultrasonic treatment, the soluble COD (chemical oxygen demand) increased about 7.1 times that of the initial SCOD, at an increase rate of $0.022m^{-1}$. In comparison, the increase in soluble nitrogen, which was ~3.4 times that of the initial soluble nitrogen concentration, was much smaller than the increase in SCOD; thus, the C/N ratio increased from 4.0 to 8.7.

Effect of storage condition on the quality of the wine and Yakju made by Lycium chinense Miller (구기자술의 저장에 따른 성분변화)

  • Choi, Seong-Hyun;Lee, Mi-Hyun;Shin, Cheol-Seung;Sung, Chang-Keun;Oh, Man-Jin;Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.39 no.5
    • /
    • pp.338-342
    • /
    • 1996
  • Fruit of Lycium chinense Miller was known to Korean as traditional medicine that has effective components for strengtherning function of human body, especially liver. To study characteristics of the wine and Yakju made by fruit Lycium chinense Miller, general components such as organic acid, methanol, ester, fusel oil and $SO_2$ were analyzed after storing them for 10 and 20 days at $20^{\circ}C\;and\;30^{\circ}C$, respectively. Organic acid contents of the wine were mainly lactic, malic, tartaric and acetic acid. Ester and fusel oil contents of the wine were $4.0{\sim}5.0\;mg%$ and $12{\sim}30\;mg%$, respectively, and the values were smaller than those of the Yakju. Methanol content of the wine was $25{\sim}27\;mg%$. Storage temperature in terms of the quality of the wine and Yakju was better in $20^{\circ}C\;than\;30^{\circ}C$. Treatment of the wine and Yakju either by adding 100 ppm of $SO_2$ or heating at $60^{\circ}C$ for 30 min was better in quality than control for storage.

  • PDF

Volatile Organic Compounds contamination in some urban runoff and groundwater samples in Seoul City (서울시 도로변 빗물과 지하수의 VOCs오염)

  • 이평구;박성원;전치완;신성천
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.73-91
    • /
    • 2001
  • compounds (VOCs) were selected for assessment of VOCs contamination in some urban runoff and groundwater samples in Seoul. They included 3 aromatic hydrocarbons, 13 alkyl benzenes, 1 ether, 26 halogenated alkanes, 10 halogenated alkenes, and 9 halogenated aromatics. The levels of VOCs in urban runoff and groundwater were measured for samples collected in March 2000, June 2000 and November 2000 in Seoul City. A total of 78 samples (44 run-off water, 27 groundwater, and 7 samples from 4 urban wastewater treatment plants in Seoul) were collected and analysed by GC-MS with purge and trap. After examination of the runoff, it was concluded that alkyl benzenes and aromatic hydrocarbons were organic compounds which were significantly impacted by traffic flows in Seoul. Of 62 VOCs, only 11 VOCs were not detected in runoff samples, while 14 VOCs were detected in 27 groundwater samples. The toluene content in the runoff was extremely variable from 0.1ppb to 29,310ppb, depending on the different sampling sites. The concentrations of xylene ranged between 0.07ppb and 2970ppb in the runoff. The concentrations ranged from 0.05ppb to 33.0ppb for benzene, 0.05ppb to 960ppb for ethylbenzene, 0.08ppb to 20ppb for trichloromethane (chloroform) , 0.03ppb to 4.30ppb for trichloroethylene(TCE) and 0.1ppb to 50ppb for 1,1,2-trichloroethane. From the preliminary study of groundwater from some wells in Seoul, the most frequently detected VOCs are djchlorornethane(methylene chloride), trichloromethane(chloroform) and toluene. Most of aromatic hydrocarbons, alkyl benzenes and other solvents generally lower than detection limits.

  • PDF

Estimating of the Greenhouse Gas Mitigation and Function of Water Resources Conservation through Conservation of Surface Soils Erosion and Policy Suggestion (표토유실 보전을 통한 온실가스배출 저감과 수자원 보전 기능의 산출 및 정책제안)

  • Oh, Seung-Min;Kim, Hyuck Soo;Lee, Sang-Pil;Lee, Jong Geon;Jeong, Seok Soon;Lim, Kyung Jae;Kim, Sung-Chul;Park, Youn Shik;Lee, Giha;Hwang, Sang-Il;Yang, Jae-E
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.74-84
    • /
    • 2017
  • Soil erosion is often extreme in Korea due to high rainfall intensities and steep slopes, and climate change has also increased the risk of erosion. Despite its significane, erosion-induced soil organic carbon (SOC) emission and water resource loss are not well understood, along with the lack of an integrated surface soil erosion protection policy. Therefore, to design adequate protection policies, land users, scientists, engineers and decision makers need proper information about surface soil and watershed properties related to greenhouse gas emission potential and water conservation capability, respectively. Assuming the total soil erosion of $346Tg\;yr^{-1}$, soil organic matter (SOM) content of 2% (58% of SOM is SOC), and mineralization rate of 20% of the displaced carbon, erosion-induced carbon emission could reach $800Gg\;C\;yr^{-1}$. Also the available water capacity of the soil was estimated to be 15.8 billion tons, which was 14 times higher than the yearly water supply demand in Seoul, Korea. Therefore, in order to prevent of soil erosion, this study proposes a three-stage plan for surface soil erosion prevention: 1) classification of soil erosion risk and scoring of surface soil quality, 2) selection of priority areas for conservation and best management practices (BMP), and 3) application of BMP and post management.

Effects of Native Korean Lespedeza(Lespedeza stipulacea Maxim.) on Soil Conservation (자생(自生) Korean Lespedeza(Lespedeza stipulacea Maxim.)가 토양보전(土壤保全)에 미치는 영향(影響))

  • Kim, Moo-Sung;Kim, Se-Young;Jeong, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.72-83
    • /
    • 1997
  • Forty six natural habitats of Korean lespedeza(Leapedeza stipulacea Maxim.) were investigated for the growth characteristics, mineral contents of plant and the physico-chemical properties of natural habitat's soil compared with the upland soil nearby the habitat. The results obtained were summarized as follows. Plant height and dry matter yield were higher in the samples taken in late than early August showing large variation within the sampling date and location. Korean lespedeza showed higher contents of Fe and Mn, but lower contents of K, Ca, Mg and Cu than Alfalfa. The contents of P and Zn were about the same. The natural habitat showed higher soil pH and Ca content but lower contents of $P_2O_5$, K, and organic matter than the vicinity of natural habitats and the average soil of Korea. The contents of Mg were about the same. The soil texture of natural habitats showed much higher portion of sand and extremely low portions of silt and clay than both area. Korean lespedeza is so well adapted to the soil with low fertilizer and organic matter that other crops and most weeds fail. It also appears to thrive on the sandy loams, loamy sands of the piedmont region such as waste land and on the similar soils with variously physico-chemical properties.

  • PDF

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Soil Dehydrogenase Activity and Microbial Biomass C in Croplands of JeJu Province (제주지역 농경지 이용유형별 토양 탈수소효소활성과 미생물체량)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Choi, Kyung-San;Kim, Seong-Cheol;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.122-128
    • /
    • 2013
  • This study was carried out to evaluate the soil dehydrogenase activity and microbial biomass C with soil type and land use in cropland of JeJu region. Soil chemical properties, dehydrogenase activity, and microbial biomass C were analyzed after sampling from upland (50 sites), orchard (50 sites), paddy (30 sites), horticultural facility (30 sites) in March. Average pH values was at 6.3 in upland soil, however soil chemical properties showed a large spatial variations in both orchard and horticultural facility soil. The Zn and Cu contents increased by the continuous application of pig manure compost in some citrus orchard soil. Soil dehydrogenase activity and microbial biomass C were higher in non-volcanic ash than in volcanic ash soil regardless of land use type. Soil dehydrogenase activity was two to four times higher in upland than in the others. It was at 38.7 ug TPF $24^{h-1}g^{-1}$ in non-volcanic ash of upland soil. Microbial biomass C content was very high in horticultural facility soil and it showed at 216.8 $mg\;kg^{-1}$ in non-volcanic ash. Soil dehydrogenase activity showed a positive correlation with organic matter ($r^2$=0.59), Zn ($r^2$=0.65), and Cu ($r^2$=0.66) in non-volcanic ash horticultural facility soil. There was a negative correlation ($r^2$=0.57) between soil organic matter and dehydrogenase activity in volcanic ash upland soil.