• Title/Summary/Keyword: organic content

Search Result 3,966, Processing Time 0.03 seconds

Studies on the Denitrification in the Submerged Paddy Soil -II. The Denitrification Rates Upon Kinds of Applied Organic Matter and Levels of Nitrogen Fertilizer (논토양(土壤)의 탈질작용(脫窒作用)에 관(關)한 연구(硏究) -제(第)II보(報). 유기물(有機物)의 종류(種類) 및 질소시비량차이(窒素施肥量差異)가 탈질(脫窒)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Kim, Seung-Hwan;Park, Jun-Kyu;An, Sang-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.76-82
    • /
    • 1986
  • A laboratory experiment was conducted to find out the denitrification rate upon the levels of nitrogen and source of organic matter in submerged sandy and sandy loam soil. The results obtained were sumarized as follows; 1. Evolution of nitrous oxide was increased at 1st and 10 days after incubation. And dinitrogen was increased at 1st and 30 days after incubation. Applications of green manure was enhanced the evolution of nitrous oxide ($N_2O$) and dinitrogen ($N_2$). 2. The cumulative denitrification rates at 50 days was high in Gyuam sandy loam soil (O-M: 1.52%) than that of Hamchang sandy soil (O-M: 3.81%). On the other hand, the cumulative emission of dinitrogen was high in Gyuam sandy loam soil while nitrous oxide was high in Hamchang sandy soil. The total mount of denitrification rate was high in order of green manure > rice straw > compost > control soil. 3. Increases of fertilizer nitrogen was enhanced the rate of emission of dinitrogen and nitrous oxide during the incubation time. 4. According to Michaelis-Menten kinetic equation, denitrification rates and reaction efficiency were remarkably increased by application of readily decomposable organic matter with in higher organic matter content of soil. 5. The negative relationship was observed between the evolution of dinitrogen and carbon ($CO_2+CH_4$) while the nitrous oxide with carbon was positive. 6. Under the this experiment conditions 1 mg of carbon was required for production of 4 mg N as $N_2O$ and 3 mg of N as $N_2$, respectively.

  • PDF

Sludge Minimization by Using Dewater and Thermal Treatment in the Water Treatment Plant (탈수(脫水) 및 건조기법(乾燥技法)을 이용한 정수장(淨水場) 슬러지 감량화(減量化))

  • Jun, Hang-Bae;Kim, Yong-Han;Kim, Ryang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.87-98
    • /
    • 1994
  • Sludge minimization in an water treatment plant can be achieved by optimizing a main water treatment process as well as by enhancing a thickening and a dewatering facilities. In this study, dewatering and drying techniques for reducing the quantity of the water sludge generated from the conventional water treatment plant in the local states were investigated by reducing its water content. Not only the types and dosages of polymers but also the mixing intensity of the mixtures of a concentrated sludge and polymers on the different pH were evaluated for the optimum dewatering conditions of the water sludge. Weight reduction of the water sludge was also tested at a given temperature range. The dewatering efficiency of the water sludge was not affected by the types of polymer but by mixing intensity(GT value) in this study. pH effect on dewaterbility of the water sludge took a major role at the neutral pH range. The optimal polymer dose was 1.5 mg-polymer/g-TSS(about 40mg/L as polymer). Dewaterability was enhanced at a lower mixing intensity(GTbelow 10,000 sec-1). Free water in the void of sludge cake was dried around $100^{\circ}C$, chemical bound water was evaporated around $320^{\circ}C$, and organic material was burned out at the range of 300 to $600^{\circ}C$. Ignition losses of the water sludge were varied 15 to 40 % as the raw water quality. The ignition loss due to the chemical bound water was 10-20% and the loss due to the organic material was 4-20% of the total ignition loss.

  • PDF

Changes in Organic acids, Free Sugars, and Volatile Flavor Compounds in Fig (Ficus carica L.) by Maturation Stage (무화과의 성숙도에 따른 유기산, 유리당 및 향기 성분의 변화에 관한 연구)

  • Shin, Tai-Sun;Park, Jin-A;Jung, Bok-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.1016-1027
    • /
    • 2015
  • This study collected 120 figs, classified them into six degrees of maturity according to hardness values, and analyzed contents of organic acids and free sugars. Volatile compounds in figs were investigated using the solid-phase microextraction method of gas chromatography/mass spectrometry. For measurement of texture, elasticity increased up to stage 4 and decreased again. Cohesiveness and brittleness increased with maturation. Organic acids in figs were mainly composed of citric acid, malic acid, and tartaric acid in the final stage. Fructose and glucose were the major sugar components of figs. Fructose content decreased from stage 1 to stage 4 and then increased significantly. One hundred and nineteen volatile compounds were identified in figs, and classes were 14 acids, 15 alcohols, 23 aldehydes, 10 esters, 33 hydrocarbons, 11 ketones, four aromatics, six miscellaneous, and five terpenes. The dominant volatile components in figs were hexadecanoic acid, hexane, dodecanal, DL-limonene, 2-hexanal, nonanal, and 6-methyl-5-hepten-2-one.

Thermal Characteristics of Waste Organic Sludges Discharged from an Chemical Product Manufacturing Industry (화학제품제조업에서 배출되는 폐 유기성슬러지의 열적 특성)

  • Kim, Min-Choul;Lee, Gang-Woo;Lee, Man-Sig;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1745-1753
    • /
    • 2008
  • We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludge discharged from chemical and petrochemical product manufacturing industries in the industrial complex. The average combustible and ash content of organic sludges from chemical and petrochemical product manufacturing industries were 17.42%, 7.45%, and 18.25%, 4.22%, respectively. The C, H, O, N, and S compositions for chemical and petrochemical product manufacturing industries were 33.06, 4.34, 24.81, 5.18, and 0.72%. And those compositions for petrochemical product manufacturing industries were 36.58, 4.74, 26.79, 5.09, and 0.49%, respectively. From the TGA test, the minimum temperature for combustion of the sludge discharged from B company was $700^{\circ}C$ for direct use for energy and 2 sludges(F and N companies) were about $600^{\circ}C$. According to the basic combustion test, high concentration of CO was formed because oxidation and pyrolysis reaction take place in the batch type reactor at the same time. From this phenomena we could obtain the significant data for the overheating and breakage of furnace.

Changes in the Characteristics of Dissolved Organic Matter by Microbial Transformation and the Subsequent Effects on Copper Binding (생분해에 따른 용존 유기물질 성상 및 중금속 구리와의 결합특성 변화)

  • Jung, Ka-Young;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • Microbial changes in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the conditional stability constants of copper were investigated using 14 day-incubations of Pony Lake fulvic acid (PLFA), Suwannee River fulvic acid (SRFA) and the mixtures of the humic substances and glucose. After incubation, dissolved organic carbon (DOC) concentrations were diminished, and specific UV absorbance values and DOC-normalized fluorescence intensities increased. The microbial changes were minimal for the samples contaning humic substances only whereas they were much pronounced for the mixtures with glucose. The extent of the changes increased with a higher content of glucose in the mixtures. The same trend was observed even for glucose solution. Our results suggest that labile organic moieties may be transformed into more chromophoric and humidified components by biodegradation. For the mixture samples, the copper binding stability constants did not change or even decreased after incubation. Therefore, microbially induced enrichment of the fulvic- and humic-like carbon structures in DOM appears to result in little change or the decrease of the copper binding coefficients.

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

Decadal Changes in Subsoil Physical Properties as Affected by Agricultural Land Use Types in Korea (농업적 토지이용에 따른 토양물리성 변동 평가)

  • Cho, Hee-Rae;Zhang, Yong-Seon;Han, Kyung-Hwa;Ok, Jung-Hun;Hwang, Seon-Ah;Lee, Hyub-Sung;Kim, Dong-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.567-575
    • /
    • 2018
  • The soil physical quality is a core factor in achieving two of sustainable agriculture's goals: productivity and environment. The purpose of this study was to assess changes in soil physical properties for nearly a decade through periodic monitoring of three cultivation types: upland, orchard, and paddy. Field surveys and lab analysis were conducted to determine the soils physical properties after every 4 years; upland (2009, 2013, and 2017), orchard (2010 and 2014), and paddy (2011 and 2015). In each year soil samples from 162-338 sites were collected. The bulk density of upland subsoil decreased from $1.53Mg\;m^{-3}$ to $1.50Mg\;m^{-3}$ while the plowing depth and subsoil organic matter increased from 13.7 cm to 19.5 cm and from $12.6g\;kg^{-1}$ to $18.3g\;kg^{-1}$ respectively during the period 2009-2017. Plowing depth for orchard increased from 16.7 cm to 18.9 cm. However, organic matter content decreased from $15.9g\;kg^{-1}$ to $15.4g\;kg^{-1}$ during the 2010-2014 period. For paddy, plowing depth and subsoil organic matter decreased from 17.5 cm to 16.7 cm and from $17.5g\;kg^{-1}$ to $15.8g\;kg^{-1}$ respectively. The subsoil bulk density increased from $1.47Mg\;m^{-3}$ to $1.52Mg\;m^{-3}$ from 2011-2015. Excess ratio for soil physical standards increased from 16% to 22% in orchard, 56% to 62% in paddy, and decreased from 41% to 29% in upland. The overall soil physical quality had been ameliorated for upland, but degraded for paddy. Improved tillage practices and application of appropriate organic matter is necessary to enhance the quality of soils, especially in the paddy field.

Characteristics of Bamboo Vinegars Obtained from Three Types of Carbonization Kiln (3종류의 탄화로에서 얻어진 죽초액의 특성)

  • Ku, Chang-Sub;Mun, Sung-Phil;Park, Sang-Bum;Kwon, Su-Duk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.87-95
    • /
    • 2002
  • Three different species of green and air-dried Korean bamboos were carbonized by using three different types of kilns designated as special (800~1000℃), improved (600~700℃) and simple kiln (400~500℃), and the bamboo vinegars obtained from the carbonization processes were characterized. In the case of the special kiln, most of the bamboo vinegars obtained at the first recovery stage showed high values of specific gravity and also in content of organic acid and water-soluble tar. The bamboo vinegars obtained from the improved kiln showed various physical properties depending on their species. In the case of simple kiln, the bamboo vinegars obtained from air-dried bamboos and at temperatures below 80℃, showed a higher specific gravity and more water-soluble tar as well as total organic components than those obtained at 80~150℃. A good linear relationship (correlation coefficient of ca. 0.90) was obtained between the specific gravities and the sum of organic acids and water-soluble tars. Therefore, this correlation coefficient might be a good index to determine the quality of bamboo vinegars. The major chemical constituents of the bamboo vinegars were acetic acid and considerable amounts of phenols: guaiacol, ethyl guaiacol, syringol, and methyl syringol.

Growth Responses and Ecological Niche of Rare plant Eleutherococcus gracilistylus(W. W. Sm.) S. Y. Hu in Gotjawal, Jeju Island (제주 곶자왈 희귀식물 섬오갈피나무(Eleutherococcus gracilistylus)의 생육반응 및 생태지위)

  • Yoon-Kyung Choi;Eui-Joo Kim;Jung-Min Lee;Ji-Won Park;Yoon-Seo Kim;Kyeong-Mi Cho;Se-Hee Kim;Gyu-Ri Kim;Ju-Seon Lee;Young-Han You
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.196-204
    • /
    • 2023
  • Eleutherococcus gracilistylus is a designated rare plant by the Korea Forest Service, a deciduous broad leaf shrub native to the Gotjawal region, Jejudo. This study aimed to analyze the growth responses of E. gracilistylus to three environment factors such as light, moisture, and organic matter, and measure its ecological niche breadth. Based on these results, an attempt was made to identify suitable environmental conditions. E. gracilistylus exhibited increased above-ground length, leaf area, and plant leaf weight under intermediate conditions of light availability(L3, 50% of natural light), rather than very high or very low light conditions. Moisture availability and organic matter availability showed variations in growth responses in terms of leaf count and plant leaf weight. Under moisture availability, growth was favorable under or below intermediate conditions (M3, 240ml), while under organic matter availability, growth response was better above intermediate conditions (N3, 12%). Ecological niche breadth showed in the light factor(0.951), the moisture factor(0.977), and the organic matter content one(0.964). These results indicate that the preferred habitat of E. gracilistylus is somewhat shady, slightly dry, and has a lot of nutrients, and that the environmental factor that has the greatest impact on growth is the amount of light, which is considered to be a priority consideration for habitat management in its native area.

Butyltins in Surface Sediments of Kyeonggi Bay, Korea

  • Kim, Gi-Beum;Tanabe, Shinsuke;Koh, Chul-Hwan
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.64-70
    • /
    • 1998
  • Forty sediment samples from Kyeonggi Bay, Korea were analyzed for butyltins, including tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) to determine their distribution and source in this area. Total butyltin concentrations in Kyeonggi Bay sediments ranged from 0.8 to 297 ng/g dry wt. with a mean value of 38 ng/g. The highest butyltin concentration was found in the innermost site in Incheon Harbor basin. The mouth of Han River had higher butyltin levels in sediments compared to open ocean. Butyltin levels correlated well with organic carbon content of sediment, but the major factor was the distance from the source area where antifouling paints were used for vessels and marine structures. Butyltin concentrations in the study area were lower than those reported for bays in other parts of the world. Considering the high toxic potential and sediment/water partition coefficient of TBT, further studies are needed to assess its biological effect in the marine ecosystem of Kyeonggi Bay.

  • PDF