• Title/Summary/Keyword: organic contaminant

Search Result 143, Processing Time 0.025 seconds

Effect of Colloids on Contaminant Transport in Riverbank Filtration (강변여과에서 콜로이드 물질이 오염물 거동에 미치는 영향)

  • Kim, Dae-Hwan;Lee, Sang-Il;Yoo, Sang-Yeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1398-1402
    • /
    • 2005
  • Riverbank filtration is a natural process using alluvial aquifers to remove contaminants and pathogens in river water for the production of drinking water. In riverbank filtration, the understanding of contaminant transport is an important task for the production of high quality drinking water. This study investigates the transport behavior of hydrophobic organic contaminants when colloids (dissolved organic matter and bacteria) are present in the aquifer. A mathematical model for the transport of contaminants is developed and solved numerically for various situations. Results show that in the riverbank filtration the presence of DOM and bacteria enhances the mobility of contaminant significantly. Sensitivity analysis indicates that the distribution of the total aqueous Phase contaminant is significantly affected by distribution coefficients which account for affinity of solid or colloidal Phase to contaminant.

  • PDF

The Effect of Chemical Sanitizers on Reducing Staphylococcus aureus on Rubber Gloves Depending on Material and Food Contaminant (고무장갑 재질 및 식품 오염에 따른 살균소독제의 황색포도상구균 저해 효과)

  • Min-Seok Oh;Sun-Young Lee
    • Journal of the FoodService Safety
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2024
  • This study investigated the effect of sodium hypochlorite and ethanol on reducing Staphylococcus aureus on gloves depending on material and food contaminant. S. aureus inoculated onto rubber gloves with various organic substances (pork extract, perilla leaf extract, and 0.2% peptone water) and inoculated rubber gloves were stored in a desiccator at 100% RH and 25℃ for 24 h before treatments with distilled water, ethanol, or sodium hypochlorite. Levels of S. aureus were significantly reduced on both types of rubber gloves when treated with ethanol and sodium hypochlorite. However, sodium hypochlorite treatment resulted in 3.27 log CFU/each of S. aureus in pork extract on nitrile gloves, indicating that the effectiveness of disinfection may vary depending on the glove material and the type of organic substance. The results of this study suggest that ethanol treatment is the most effective disinfection method for S. aureus on rubber gloves, regardless of the material and organic substances.

Removal of heavy metal and organic matter by electrokinetic ultrasonic remediation technology

  • Chung, Ha-Ik;Oh, In-Kyu
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.210-214
    • /
    • 2002
  • In this study, the coupled effect of electrokinetic and ultrasonic remediation technology was investigated for removing of heavy metal and organic matter at the same time. The laboratory tests were conducted using specially designed and fabricated electrokinetic and ultrasonic devices. The electrokinetic technique was applied to remove mainly the heavy metal and the ultrasonic technique was applied to remove mainly organic substance in contaminated soil. Diesel fuel and Cd were used as a surrogate contaminant for this test. A series of laboratory experiments involving electrokinetic and electrokinetic+ultrasonic flushing test were carried out. An increase in permeability and contaminant removal rate was observed in electrokinetic+ultrasonic flushing test.

  • PDF

Biobarrier를 이용한 유기오염물질의 생물학적분해모의를 위한 수치모델개발

  • 왕수균
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.137-140
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant degraded through cometabolism in dual-porosity soils during the in situ bioaugmentations. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept [Molz et at., 1986〕 were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailablity of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective in situ bioaugmentation scheme.

  • PDF

Significant Parameters for Assessing Soil Contaminant-Leaching to Groundwater and Determining Soil Sample Size in Field Survey

  • Jeong, Seung-Woo;An, Youn-Joo
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • For a given soil-contaminated site, a level of soil contamination is characterized and decisions on risk may be made from the risk assessment. The study evaluated critical design factors for the determination of sample size in the sampling design plan and the assessment of soil contaminant- leaching to groundwater. Two variables, the minimum relative detectable difference (T) and coefficient of variation (CV) were evaluated for the sample size determination. The minimum number of samples can be appropriately determined by CV under a T value greater than or equal to 0.2. Soil-contaminant leaching to groundwater was evaluated by using the Soil Screening Level equation of U.S. Environmental Protection Agency and the Risk Based Screening Level equation of American Society for Testing and Materials, with the same input parameters. The groundwater concentrations estimated from soil contaminant concentrations were significantly affected by the Darcy velocity of groundwater and the organic content of soil.

Developing a Numerical Model for Simulating In-Situ Biodegradation of an Organic Contaminant, TCE, in Biobarrier (생물벽체내 유기오염물질 TCE의 생물학적 분해 모의를 위한 수치모델개발)

  • 왕수균;오재일;배범한
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.12-20
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant, TCE, degraded by cometabolism in dual-porosity soils during the installation of in situ biobarrier. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction in biobarrier due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailability of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective installation of biobarrier during in situ bioaugmentation scheme.

Transport of Colloids and Contaminant in Riverbank Filtration (강변여과에서 콜로이드 물질과 오염물의 거동에 관한 연구)

  • Lee Sang-Il;Kim Dae-Hwan;Lee Sang-Sin;You Sang-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.511-520
    • /
    • 2006
  • Riverbank filtration is a natural process, using alluvial aquifers to remove contaminants and pathogens in river water for the production of drinking water. In Korea, most of the drinking water is supplied by surface water in-take. However, maintaining the quality of the drinking water becomes more and more difficult due to the increase of contamination. In riverbank filtration, the understanding of contaminant transport is an important task for the production of high quality drinking water and for the maintenance of facilities. In this paper, the transport behavior of hydrophobic organic contaminants is investigated when contaminants coexist with dissolved organic matter (DOM) and bacteria. In the developed model, the aquifer is thought of as a four phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid matrix phase. The model equations are solved numerically for various situations. Results indicate that the presence of colloidal matters can enhance the mobility of contaminant significantly and that partitioning coefficients play an important role in the process.

Use of Anionic Surfactants To Modify Soil Surface to Retard Migration of Hydrophobic Organic Compounds (음이온 계면활성제를 이용한 유기오염물질 고정화 방안에 관한 연구)

  • 박인선;조윤경;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.129-132
    • /
    • 2000
  • In this research, we proposed the immobilization zone where the organic contaminant would be fixed, so that ground water could be prevented from the organic contaminants. The surfactant was adsorbed on the soil particles and the organic contaminants were partitioned into the hydrophobic tails of the surfactant in the immobilization zone. Surfactants with different molecular structures-SDDBS (sodium dodecylbenzenesulfonic acid), MADS (monoalkylated disulfonated diphenyl oxide), DADS (dialkylated disulfonated diphenyl oxide) - were used in this study. Up to the present, the research on the immolization simulated the saturated condition. But many site contaminated with organic contaminants and the zones where immobilization would be applied are unsaturated. In this research, in order to investigate the behaviors of surfactants and organic contaminants in unsaturated condition, the unsaturated columns were experimented, and their results were compared with the saturated case.

  • PDF

Analysis of contamination characteristics of filter cloth in filter press by repeated dehydration of organic sludge and evaluation of ultrasonic cleaning application (유기성 슬러지 반복 탈수에 의한 필터프레스 여과포 오염 특성 분석 및 초음파 세척 적용 평가)

  • Eunju Kim;Cheol-Jin Jeong;Kyung Woo Kim;Tae Gyu Song;Seong Kuk Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.15-25
    • /
    • 2024
  • In this study, the regeneration effect of pressurized water and ultrasonic cleaning was investigated for contaminated filter cloth from the sewage sludge filter press process. For this purpose, contaminated filter cloth was collected from a 3-ton sewage sludge hydrothermal carbon treatment filter press. First, the contamination characteristics were analyzed. According to the location of the filter cloth, air permeability and unit mass were measured, and compared with the values of a new filter cloth. Next, the results were mapped over the entire area to evaluate the contamination characteristics. Finally, pressure cleaning at 3 bar and ultrasound at frequencies of 34, 76, 120, and 168 kHz were performed on the contaminated filter cloth. In addition, the cleaning efficiency was evaluated by 3 levels of contamination degree. As a result, pore contamination occurred mainly at the bottom and both sides of the filter cloth, where the filter material was continuously injected and compressed. Surface contamination appeared evenly over the entire area. As a result of washing, air permeability increased by 1.3-3.1%p and contaminant removal was by 2.7-4.4% under pressure. In ultrasonic cleaning, air permeability increased by 12.5-61.5%p and contaminants were removed by 2.7-29.2%. In ultrasonic cleaning the lower the frequency, the higher air permeability and contaminant removal rate. Also, The higher pore contamination level, the better the air permeability improvement and contaminant removal.

Black shale as an effective sorbent of Trichloroethylene (Black shale을 이용한 유기 오염물질인 TCE의 흡착 제거에 관한 연구)

  • 민지은;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.246-249
    • /
    • 2002
  • Black shale that has relatively high organic carbon content was tested to determine its sorption phenomena and capacity for TCE. Conventional batch sorption tests were peformed at room temperature. The parameters that were thought to affect the TCE sorption were solution pH and dissolved organic matter. The effect of solution pH on TCE sorption was minimal, but the dissolved organic matter increased the amount of TCE sorbed on black shale. Thus, using black shale as sorbent for TCE in groundwater could save material costs by replacing high cost conventional activated organic carbon.

  • PDF