• Title/Summary/Keyword: organic and fatty acids

Search Result 352, Processing Time 0.031 seconds

Effect of Leaf Maturity on Physico -chemical Properties of Leaf Tobacco (담배 잎의 성숙도에 따른 이화학적 특성)

  • 이철환;진정의;한철수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.200-206
    • /
    • 1996
  • Experiment was conducted to get the information about physico-chemical properties of flue-cured tobacco on the degree of maturity cultivated in paddy-upland rotated field, and compared to upland ones. For the samples of this experiment, 3~4 leaves at each stalk position were harvested from the bottom of plants. Physico-chemical properties of cured leaves were determined from the samples collected at weekly intervals, and of obtained from 4 stalk positions. For the degree of maturity, harvested leaves were separated with visual characters into four classes such as immature, mature, ripe, and mellow. Regardless of stalk position, the order of shrinkage rate with length and width of leaves was mellow> immature> ripe> mature, and ripe leaves from paddy field showed higher shrinkage rate than those of upland. Nicotine and total nitrogen contents were decreased with the degree of maturity while reducing sugar content were showed a reverse tendency. Ripe leaves from paddy field had lower reducing sugar contents, comparing with upland tobacco. Filling capacity of cured leaves from paddy field was decreased with degree of maturity, but there was no difference between upland and paddy tobacco. Shatter index was increased in the oeder of immature > mellow > mature > ripe. Chemical components of cigarette smoke from paddy field tobacco were little higher in $CO_2$ total particulate matter and tar contents, while combustibility was little lower than that of upland tobacco. It was also evaluated that paddy field tobacco was unfavorable for the non-volatile organic and higher fatty acids contents comparing with upland tobacco.

  • PDF

Effect of Barley Tea on the Reduction of the Tap Water Chlorination By-Products in Top Water and Identification of Maillard Reaction Products in the Extracts of Barley Tea, Corn Tea, and Cassia tora Seed Tea Using GC/MSD (보리차 제조시 수돗물 중 염소소독부산물의 제거 여부 및 보리차.옥수수차.결명차 중 Maillard 반응 생성물 동정)

  • Lee, Soo-Hyung;Kim, He-Kap
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.256-261
    • /
    • 1999
  • This study was conducted to investigate the effect of barley tea with roasted grains and barley tea with a tea bag on the reduction of chlorination by-product(CBP) levels in chlorinated drinking water. Since the concentrations of six volatile compounds of eight CBPs were blow their respective detection limits after 10 minute heating, two nonvolatile CBPs dichloroacetic acid and trichloroacetic acid, and total chlorine were compared between tap water and two kinds of barley tea. No significant differences were observed in the relative changes of the amounts of the above three items, and new peaks which were not found in the original water appeared in the chromatograms of gas chromatograph/electron capture detector(GC/ECD). Thirty three organic compounds were identified in the extracts of barley tea with roasted grains, barley tea with a tea bag, corn tea, and Cassia tora seed tea which were prepared with distilled/deionized water, using gas chromatography/mass selective detection(GC/MSD). Exclusive of fatty acids, most of the compounds were aromatic compounds such as phenols, furans, and pyrroles.

  • PDF

Material Analysis and Conservation Treatment of Sangryangmun in Jinnamgwan, Yeosu (여수 진남관 상량문의 재질분석 및 보존처리)

  • Imn, Se Yeon;Yu, Ji A;Lee, Jae Sung;Jeong, Hee Won
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.213-224
    • /
    • 2020
  • This research conducted a component analysis and conservation treatment of "Sangryangmun," a material which had been written in 1965 and was discovered during the repair project for "Jinnamgwan" in Yeosu. The "Sangryangmun" has been stored in a cylindrical metal storage; however, defects, discolorations, hardening, and damages caused by pollutants were found. Based on the XRF analysis, rust in the cylindrical metal storage, which was made of Cu, was stuck on the surface of the "Sangryangmun". Using FT-IR and Pyrolysis-GC/MS analyses, carbonyl and compounds of fatty acids were detected; the organic material on the surface of the "Sangryangmun" was identified to have belonged to oil-based components. Therefore, it was presumed that the bast fibers of a mulberry was used in the paper. To determine the conservation materials, component analysis, condition survey, and preliminary test on adhesives were conducted. Moreover, the missing parts and partial linings were filled using mulberry-fiber paper, methyl cellulose, etc.

Effect of Season on Volatile Organic Compounds and Volatile Fatty Acids Concentration in finishing Pig Slurry to Grassland (초지환원용 비육돈 슬러리의 계절에 따른 휘발성유기물과 휘발성지방산 농도 분석연구)

  • Cho, Sung Back;Yang, Seung Hak;Lee, Kyung Tai;Park, Sung Kwon;Han, Duck Woo;Choi, Dong Yun;Hwang, Ok Hwa
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.125-128
    • /
    • 2014
  • The objective of this study is to investigate the changes in levels of odorous compounds in pig slurry during different seasons. Slurry from pens of finishing pigs was sampled every 4-wk and concentration of odorous compounds was analyzed. There was no difference in the range of phenols level (123 to 156 ppm) during spring (April to May), summer (July to August) and fall (October to November). The concentration of indoles was higher (P<0.05) during spring (14.3 ppm) than summer and fall (5.4~7.6 ppm). Level of BCFA ranging from 727 to 1,194 ppm was not different at any season. Among SCFA, there was no difference in propionic acid during any season but levels of acetic acid and butyric acid were highest (P<0.05) during spring season. Concentration of odorous compounds in pig slurry was highest during spring season. Interestingly, it tended to be lower during summer season compare to fall. This result might be due to relatively lower ventilation rate in order to maintain a constant temperature during spring season. Further study will be necessary to determine the relationship between the concentration of odorous compounds and ventilation system.

Effect of Dietary Yeast (Saccharomyces exiguus) on Growth Performance, Cecal Microflora and Fecal Ammonia Gas in Broiler Chickens (효모(Saccharomyces exiguus)의 급여가 육계 생산성, 맹장내 미생물 및 분내 암모니아 가스 발생에 미치는 영향)

  • Kim, D.W.;Jang, B.G.;Kim, J.H.;Yu, D.J.;Kang, K.H.;Kang, H.G.;Na, J.C.;Kim, S.H.;Lee, D.S.;Suh, O.S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.2
    • /
    • pp.137-141
    • /
    • 2007
  • This experiment was conducted to investigate the effects of dietary yeast (Saccharomyces exguus) supplementation on growth performance, cecal microflora and fecal ammonia gas in broiler chicks. A total of two hundred seventy, 1-d-old male broiler chicks (Ross strain) were randomly allotted to nine pens (replicates), 30 birds per pen. There were three dietary treatments with three replicates. The treatments were control (virginiamycin 0.05%+salinomycin 0.03%), Saccharomyces exguus 0.5 and 1.0%. Total body weight gain were significantly higher in Saccharomyces exguus1 1.0% treatment than the control (P<0.05). Although not significant, the yeast supplementation tended to improve the feed conversion ratio. No significant differences were observed on the numbers of cecal E. coli, Salmonella and Lactobacillus in yeast treatments compared to those of control. The production of fecal ammonia gas was significantly lower in yeast treatments than the control (P<0.05). The concentrations of fecal short chain fatty acids and volatile organic compounds were not different among the groups. These results suggest the possibility that yeast (Saccharomyces exguus) could be used as the alternative of antibiotic growth promoters by improving the performance of broiler chicks. In addition, dietary yeast could improve the environment of broiler houses by reducing fecal ammonia production.

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

Comparison of Fermentation Characteristics of Italian Ryegrass (Lolium multiflorum Lam.) and Guineagrass (Panicum maximum Jacq.) during the Early Stage of Ensiling

  • Shao, Tao;Zhang, Z.X.;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1727-1734
    • /
    • 2005
  • The fermentation characteristics and mono- and di-saccharides compositions during the early stage of ensiling were studied with a temperate grass, Italian ryegrass (Lolium multiflorum Lam.) and a tropical grass, guineagrass (Panicum maximum Jacq.). The laboratory silos were kept in the room set at 25$^{\circ}C$, and then were opened on 0.5, 1, 2, 3, 5 and 7 days (14 days in Italian ryegrass) after ensiling, respectively. The Italian ryegrass silage showed a fast and large pH decrease caused by a fast and large production of lactic acid during the first 5 days of ensiling and succeeded to achieve lactic acid type fermentation; high lactic acid/acetic acid and lactic acid content at the end of ensiling (14 days), low values of pH (3.74), acetic acid, ethanol and ammonia-N/total nitrogen, none or only small amounts of Butyric acid, valeric acid and propionic acid. The guineagrass silage showed a slow decrease in pH and a slow increase in lactic acid content during the full ensiling period, causing a high final pH value, low contents of lactic acid, acetic acid, total volatile fatty acids and total organic acids. In Italian ryegrass silage, mono- and di-saccharides compositions decreased largely within the initial 0.5 day (12 h) of ensiling. Sucrose disappeared rapidly within the initial 0.5 day of ensiling, but fructose and glucose contents showed an initial rise by the activity of enzymes in plant tissues, and then decreased gradually. On the other hand, the contents of monoand di-saccharides in guineagrass showed the largest decreases due mainly to plant respiration within the initial 0.5 day of ensiling, and no initial rises in fructose and glucose contents during the early stage of ensiling because of the absence of fructans which are hydrolyzed into fructose and glucose in temperate grasses. In both silages, the rate of reduction in mono- and di-saccharides compositions within the initial 5 days of ensiling was ranked in the order of glucose>fructose>sucrose, suggesting that glucose and fructose might be more favorably utilized than sucrose by microorganisms and glucose is the first fermentation substrate. It was concluded that the silage made from Italian ryegrass with high moisture content had a good fermentation quality owing to the dominance of lactic acid bacteria and active lactic acid fermentation during the initial stage of ensiling. These results can be explained by rapid plant sap liberation and the high activity of plant enzyme hydrolyzed fructans into fructose and glucose within the initial 2 days of ensiling, which stimulate the homofermentative lactic acid bacteria growth. In ensiling a temperate grass, the physical characteristics may ensure the rapid onset of fermentation phase, which results from the smaller losses of water-soluble carbohydrates during the initial stage of ensiling and providing sufficient water-soluble carbohydrates for lactic acid bacteria. The silage made from guineagrass with intermediate dry matter and high initial mono- and di-saccharides content was stable silage. This could be explained by the higher incorporation of air during the very early stage of ensiling and the restriction of cell breakdown and juice release due to the properties of a tropical grass with coarse porosity and stemmy structures. These physical characteristics delayed the onset of lactic acid bacteria fermentation phase by extending the phases of respiration and aerobic microorganisms activity, causing the higher loss of water-soluble carbohydrates and the shortage of lactic acid bacteria fermentation substrates.

Decentralized Composting of Garbage in a Small Composter for Dwelling House;III. Laboratory Composting of the Household Garbase in a Small Bin with Double Layer Walls (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화;III. 실험실조건에서 이중벽 소형 용기에 의한 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.232-245
    • /
    • 1995
  • The garbage from the dwelling house was composted in two kinds of small composter in the laboratory, and the possibility of garbage composting was examined. The composters were general small. One (type 3) was constructed with the double layer walls and the other (type 4) was the same as the first except for being insulated. Because it was found that type 3 was not available for composting under our meteorological conditions through the winter experiment, only type 4 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several components in the compost was evaluated and discussed. The results summarized below were those obtained at the end of the experiment, if the time was not specified. 1) The maximum temperature was $43^{\circ}C$ in winter, $55^{\circ}C$ in spring and $56^{\circ}C$ in summer. 2) The mass was reduced to an average of 63% and the volume reduction was an average of 78%. 3) The density was estimated as 1.5 kg/l in winter and 0.8 kg/l in spring and summer. 4) The water content was not much changed during the composting periods. It was 79.3% in winter, 75.0% in spring and 70.0% in summer. 5) After pH value increased during the first week, it decreased until the second week and increased again continuously thereafter. It reached pH 6.19 in winter, pH 7.59 in spring and pH 8.69 in summer. 6) The faster the organic matter was decomposed, the greater the ash content increased. The contents of cellulose and lignin increased, but that of hemicellulose decreased during the composting period. 7) Nitrogen contents were in the range of 3.3-6.8% and especially high in summer. After ammonium contents increased at the early stage of the composting period, they decreased. The maximum ammonium-nitrogen content was 2,404mg/kg after 8 weeks in winter, 12,400mg/kg after 3 weeks in spring and 20,718mg/kg after 3 weeks in summer. C/N-ratios decreased with the lapse of composting time, but they were not much changed. Nitrification occurred actively in summer. 8) The contents of volatile and higher fatty acids increased at the early stage of composting and reduced after that. The maximum content of total fatty acid was 9.7% after 6 weeks in winter, 14.8% after 6 weeks in spring and 15.8% after 2 weeks in summer. 9) The contents of inorganic components were not accumulated as composting proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.4% $K_2O$, 2.2-5.4% CaO and 0.30-0.61% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.21-14.55mg/kg CN, 11-166mg/kg Zn, 5-65mg/kg Cu, 0.5-10.8mg/kg Cd, 6- 35mg/kg Pb, ND-33 mg/kg Cr and ND-302.04 g/kg Hg.

  • PDF

Decentralized Composting of Garbage in a Small Composter for Dwelling House I. Laboratory Composting of the Household Garbage in a Small Bin (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화 I. 실험실 조건에서 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.321-337
    • /
    • 1994
  • The garbage from the dwelling houses was composted in two kinds of small composter in laboratory to investigate the possibility of garbage composting. They were general small composters. One (type 1) was insullated but the other (type 2) was not. Because it was found that type 2 was not available for composting under our meteorological conditions through winter experiment, only type 1 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several compounds in compost was evaluated and discussed. The result summarized belows are those taken at the end of the experiment, if the time was not specified. 1) The maximum temperature was $58^{\circ}C$ in spring, $57^{\circ}C$ in summer and $41^{\circ}C$ in winter. This temperature was enough to destroy the pathogen except for winter. 2) The mass was reduced to average 62.5% and the volume reduction was avergae 74%. 3) The density was estimated as 0.7kg/l in spring, 0.8kg/l in summer and 1.1kg/l in winter. 4) The water content was not much changed for composting periods. It had 75.6% in spring and 76.6% in summer and winter. 5) There was a great seasonal difference in pH value. It was reached to pH 6.13 in spring, pH 8.62 in summer and pH 4.75 in winter. 6) The faster organic matter was decomposed, the greater ash content was increased. Cellulose and lignin content were increased, but hemicellulose content was reduced during composting period. 7) Nitrogen contents were in the range of 3.1-5.6% and especially high in summer. After ammonium nitrogen contents were increased at the early stage of composting period, they were decreased. The maximum ammonium nitrogen content was 3,243mg/kg after 2 weeks in winter, 6,053mg/kg after 3 weeks in spring and 30,828mg/kg after 6 weeks in summer. C/N-ratios were not much changed. Nitrification occurred actively in spring and summer. 8) The contents of volatile and higher fatty acids were increased in early stage of composting and reduced after that. The maximum content of total fatty acid was 10.1% after 2 weeks in winter, 5.8% after 2 weeks in spring and 15.7% after 4 weeks in summer. 9) The contents of inorganic compounds were not accumulated as composting was proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.9% $K_2O$, 2.4-4.6% CaO and 0.30-0.80% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.11-28.99mg/kg CN, 24-166mg/kg Zn, 5-129mg/kg Cu, 0.8-14.3mg/kg Cd, 7-42mg/kg Pb, ND-30mg/kg Cr and $ND-132.16\;{\mu}g/kg$ Hg.

  • PDF

Influence of Wheat Straw Pelletizing and Inclusion Rate in Dry Rolled or Steam-flaked Corn-based Finishing Diets on Characteristics of Digestion for Feedlot Cattle

  • Manriquez, O.M.;Montano, M.F.;Calderon, J.F.;Valdez, J.A.;Chirino, J.O.;Gonzalez, V.M.;Salinas-Chavira, J.;Mendoza, G.D.;Soto, S.;Zinn, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.823-829
    • /
    • 2016
  • Eight Holstein steers ($216{\pm}48kg$ body weight) fitted with ruminal and duodenal cannulas were used to evaluate effects of wheat straw processing (ground vs pelleted) at two straw inclusion rates (7% and 14%; dry matter basis) in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion. The experimental design was a split plot consisting of two simultaneous $4{\times}4$ Latin squares. Increasing straw level reduced ruminal (p<0.01) and total tract (p = 0.03) organic matter (OM) digestion. As expected, increasing wheat straw level from 7% to 14% decreased (p<0.05) ruminal and total tract digestion of OM. Digestion of neutral detergent fiber (NDF) and starch, per se, were not affected (p>0.10) by wheat straw level. Likewise, straw level did not influence ruminal acetate and propionate molar proportions or estimated methane production (p>0.10). Pelleting straw did not affect ($p{\geq}0.48$) ruminal digestion of OM, NDF, and starch, or microbial efficiency. Ruminal feed N digestion was greater (7.4%; p = 0.02) for ground than for pelleted wheat straw diets. Although ruminal starch digestion was not affected by straw processing, post-ruminal (p<0.01), and total-tract starch (p = 0.05) digestion were greater for ground than for pelleted wheat straw diets, resulting in a tendency for increased post-ruminal (p = 0.06) and total tract (p = 0.07) OM digestion. Pelleting wheat straw decreased (p<0.01) ruminal pH, although ruminal volatile fatty acids (VFA) concentration and estimated methane were not affected ($p{\geq}0.27$). Ruminal digestion of OM and starch, and post-ruminal and total tract digestion of OM, starch and N were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal NDF digestion was greater (p = 0.02) for dry rolled than for steam-flaked corn, although total tract NDF digestion was unaffected (p = 0.94). Ruminal microbial efficiency and ruminal degradation of feed N were not affected (p>0.14) by corn processing. However, microbial N flow to the small intestine and ruminal N efficiency (non-ammonia N flow to the small intestine/N intake) were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal pH and total VFA concentration were not affected ($p{\geq}0.16$) by corn processing method. Compared with dry rolled corn, steam-flaked corn-based diets resulted in decreased acetate:propionate molar ratio (p = 0.02). It is concluded that at 7% or 14% straw inclusion rate, changes in physical characteristics of wheat straw brought about by pelleting negatively impact OM digestion of both steam-flaked and dry-rolled corn-based finishing diets. This effect is due to decreased post-ruminal starch digestion. Replacement of ground straw with pelleted straw also may decrease ruminal pH.