• Title/Summary/Keyword: organic acid production

Search Result 738, Processing Time 0.03 seconds

Production of $\alpha$-Glucosidase Inhibitor by $\beta$-Glucosidase Inhibitor-Producing Bacillus lentimorbus B-6

  • Kim, Kyoung-Ja;Yang, Yong-Joon;Kim, Jongkee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.895-900
    • /
    • 2002
  • A soil microorganism producing ${\alpha}$- and ${\beta}$-glucosidase inhibitors was identified as Bacillus lentimorbus, based on the fatty acid and morphological analyses, along with biochemical and physiological tests. The ${\alpha}$-glucosidase inhibitor was highly produced by this strain in a culture medium containing $0.25\%$ of sodium glutamate and $0.5\%$ of glucose, pH 8.0 at $30^{\circ}C$ for 2 days. The ${\alpha}$-glucosidase inhibitor from culture filtrate of his strain was identified as water soluble, organic solvent nonextractable, and heat stable. In addition to ${\alpha}$-glucosidase inhibitor, this strain also produced ${\beta}$-glucosidase inhibitor in he same culture medium and this inhibitor showed an antifugal activity against Botrytis cinerea. While the production of ${\alpha}$- glucosidase inhibitor was decreased by a glucose concentration higher than $1\%$, the production of ${\beta}$-glucosidase inhibitor was lot Influenced by a glucose concentration higher than $20\%$. The ${\alpha}$-glucosidase inhibitor from culture filtrate of this strain was separated from the ${\beta}$-glucosidase inhibitor through Sephadex G-100 column chromatography.

Research Trends in the Development of Cosmetic Ingredients for Skin Barrier Improvement

  • Hyung-Bum Park;Jeong-Yeon Park
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1445-1453
    • /
    • 2023
  • In 2022, the domestic production performance of functional cosmetics in South Korea reached 4.6 trillion won, accounting for 33.85% of the total cosmetics production. The number of functional cosmetics reviewed increased by about 7.5% from the previous year, totaling 974 items. Especially with the increasing importance of the skin barrier function due to skin sensitivity caused by various environmental pollutants, domestic cosmetic companies are showing interest in the development of new ingredients and products related to this area. This study aims to analyze academic research trends related to in vitro experiments for the development of cosmetics improving the skin barrier, to provide practical information for the cosmetic industry. The findings are as follows: Academic research mainly focused on the efficacy of natural ingredients in improving the skin barrier, but there is a significant lack of quantitative accumulation of research. For the development of skin barrier-improving cosmetic ingredients, efficacy evaluation indicators were set, including hyaluronic acid production, expression of filaggrin gene, loricrin, formation of cornified envelope (CE), and expression of ceramide synthesis enzyme genes. Moreover, effective cosmetic ingredients for improving the skin barrier included lemongrass and perilla leaf extracts, flavonoids, Lactococcus lactis subsp. lactis, Exosomelike Nanovesicles derived from apple callus, Eleutherococcus sessiliflorus, Acanthopanax sessiliflorus, Eleutherococcus gracilistylus, Acer okamotoanum extracts, Aloe vera adventitious root extract, ethanol extract of Aruncus dioicus, and organic solvent fraction of Dracocephalum argunense.

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF

Feeding and Management System to Reduce Environmental Pollution in Swine Production - Review -

  • Han, In K.;Lee, J.H.;Piao, X.S.;Li, Defa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.432-444
    • /
    • 2001
  • In this manuscript, several effective feeding and management systems to reduce environmental pollution in swine production have been briefly introduced. It is logical that reducing the excretion of nutrients in manure should be the first step to reduce the environmental impact of pig production. it is evident that the excretion of nitrogen and phosphorus can be reduced when more digestible or available feedstuffs are used. Also, it is well known that proper feed processing can reduce anti nutritional factors (ANF) and improve nutrient digestibilities. Supplementation of effective feed additives can reduce excretion of nitrogen and phosphorus due to efficient feed utilization. These include enzymes (e.g., phytase), antibiotics, probiotics, organic acids and growth hormones ($\beta$-agonists and porcine somatotropin). One of the most effective ways to reduce pollutants from swine manure is to use synthetic amino acids in feed manufacturing. Many studies showed that reduction of 2 to 4% unit (U) of dietary protein with supplemental amino acid (AA) could dramatically reduce (15 to 20%) nitrogen excretion. Regarding feeding strategies, it has been recognized that phase feeding regimen could be used to reduce nitrogen and phosphorous excretion by feeding pigs in better agreement with age and physiological state. Feeding barrows and gilts separately, known as split sex feeding, can also decrease excretion of nitrogen and phosphorus. With the increasing concerns on the negative impact of animal production systems on the environment, animal nutritionists and producers should be aware that sustainability of animal agriculture is as important as high production performance. Therefore, some feeding and management strategies described in this manuscript will help to reduce environmental pollution in swine production. Proper combination of feeding regimen and environment-friendly diet formulation through nutritional approach will be more effective to reduce nutrient excretion in swine production system compared to single approach to do so.

Properties of Lactic Acid Bacteria That Cause Decrease in Post-Fermentation to Apply Product (후산 발효 적합 균주 선발 및 특성)

  • Sohn, Ji Yang;Kim, Sae Hun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • Emerging studies suggest that vegetables or fruit juices deemed to be potential alternative base medium for lactic acid bacteria fermentation. Until now, limited studies have been carried out to evaluate such applications. Thus, the objective of present study is that lactic acid bacteria were evaluated for their viability at low pH, growth during storage at low temperature, and $CO_2$ formation. Furthermore, the effects of grapefruit extract with respect to cell viability, sensory ability, and organic acid production were evaluated for these strains. The probiotic properties of the strains, including acid tolerance, bile tolerance, and adhesion to human intestinal epithelial cells (HT-29 cells), prebiotic characteristics, and safety features were examined. All strains survived in MRS medium broth adjusted to pH 3.8, at $10^{\circ}C$ for 6 days, and did not produce $CO_2$ to check post fermentation. The medium of grapefruit extract fermentation by Lactobacillus plantarum CJIH 203 resulted in maximal viable counts, compared with other strains, and the extract subsequently tasted sour due to the presence of lactic acid. Lactobacillus plantarum CJIH203 was highly resistant to artificial gastric juice and intestinal juice, while Lactococcus lactis SJ09 strongly adhered to HT-29 cells. Tagatose showed the greatest ability to enhance the growth of L. plantarum SJ21, relative to the other strains. All strains were verified by safety tests such as hemolysis, gelatin hydration, and urea degradation. Therefore, these strains could be promising candidates for use in reducing excessive post-fermentation and functional products.

  • PDF

Biotransformation Process for the Production of Sotolon as a Natural Flavour Enhancer (천연 향미소재 소톨론 생산을 위한 생물전환공정)

  • Jang, In-Hwan;Kang, Min-Sook;Chae, Hee-Jeong
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.49-54
    • /
    • 2004
  • Biotransformation process using microorganisms was examined to improve the bioconversion rate for the production of sotolon from the raw material. First, the extraction condition was optimized with regard to solvent type and pretreatment conditions. Dichloromethane was selected as a suitable solvent for the extraction of sotolon and sotolon-related compounds. Second, various microorganisms such as lactic acid-producing bacteria, yeast and fungi were tested for the biotransformation. Among the tested microbes, Agaricus blazei showed the highest conversion rate. Additives including amino acids, salts, and organic acids were investigated to test their effects on bioconversion. When the solution was added by isoleucine, ${\alpha}-ketoglutaric\;acid$, ascorbate, and $FeSO_4$ and later incubated by culture broth containing the mycelium of Agaricus blazei, the sotolon content increased up to about 77 times as compared to that of the raw material.

Bale Location Effects on Nutritive Value and Fermentation Characteristics of Annual Ryegrass Bale Stored in In-line Wrapping Silage

  • Han, K.J.;McCormick, M.E.;Derouen, S.M.;Blouin, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1276-1284
    • /
    • 2014
  • In southeastern regions of the US, herbage systems are primarily based on grazing or hay feeding with low nutritive value warm-season perennial grasses. Nutritious herbage such as annual ryegrass (Lolium multiflorum Lam.) may be more suitable for preserving as baleage for winter feeding even with more intensive production inputs. Emerging in-line wrapped baleage storage systems featuring rapid wrapping and low polyethylene film requirements need to be tested for consistency of storing nutritive value of a range of annual ryegrass herbage. A ryegrass storage trial was conducted with 24-h wilted 'Marshall' annual ryegrass harvested at booting, heading and anthesis stages using three replicated in-line wrapped tubes containing ten round bales per tube. After a six-month storage period, nutritive value changes and fermentation end products differed significantly by harvest stage but not by bale location. Although wilted annual ryegrass exhibited a restricted fermentation across harvest stages characterized by high pH and low fermentation end product concentrations, butyric acid concentrations were less than 1 g/kg dry matter, and lactic acid was the major organic acid in the bales. Mold coverage and bale aroma did not differ substantially with harvest stage or bale location. Booting and heading stage-harvested ryegrass baleage were superior in nutritive value to anthesis stage-harvested herbage. Based on the investigated nutritive value and fermentation characteristics, individual bale location within in-line tubes did not significantly affect preservation quality of ryegrass round bale silages.

Effects of Adding Urea and Molasses on Napiergrass Silage Quality

  • Yunus, M.;Ohba, N.;Shimojo, M.;Furuse, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1542-1547
    • /
    • 2000
  • To standardize proper formulation of urea and molasses, the former to increase crude protein content of tropical grass and the latter for improving its silage quality, we examined the fermentation quality of silage of fresh and wilted napiergrass (Pennisetum purpureum Schumach) with different levels of urea and molasses with or without lactic acid bacteria (LAB). Silage was made of napiergrass with conditions of fresh young (Exp. 1),young wilted for half day (Exp. 2) and fresh mature (Exp. 3). Chopped plant materials of about 1cm length were ensiled into a laboratory silo and incubated for one month at $25^{\circ}C$. The treatments were the combination of 0, 0.2 and 0.6% of urea and 0, 2 and 5% of molasses (fresh material basis) with or without LAB inoculation. After opening the silo, pH, organic acids, volatile basic nitrogen (VBN) and total nitrogen (TN) were determined. Addition of molasses significantly (p<0.01) lowered pH values in three experiments. Though molasses addition increased lactic acid production even at a higher level of urea, pH values at 0 and 2% molasses were significantly increased by urea in fresh and wilted young silages, but in fresh mature silage it occurred only when molasses was not added. VBN/TN at 0.6% urea were decreased significantly by the highest molasses in three experiments. Significant increases in TN by the increasing of urea addition were observed at all levels of molasses in wilted young and fresh mature silages. In conclusion, a combination of 5% molasses and 0.6% urea could improve the nutritive and fermentation qualities of napiergrass silage under young, wilting and mature conditions.

Effect of Additives and Fermentation Periods on Chemical Composition and In situ Digestion Kinetics of Mott Grass (Pennisetum purpureum) Silage

  • Nisa, Mahr-un;Touqir, N.A.;Sarwar, M.;Khan, M. Ajmal;Akhtar, Mumtaz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.812-815
    • /
    • 2005
  • This study was conducted to see the influence of additives and fermentation periods on Mott grass silage (MGS) characteristics, its chemical composition and to compare the digestion kinetics of Mott grass (MG) and MGS in Nili buffaloes. Mott grass chopped with a locally manufactured chopper was ensiled using two additives, cane molasses and crushed corn grains each at 2, 4 and 6% of forage DM for 30 and 40 days in laboratory silos. The pH, lactic acid concentration, dry matter (DM), crude protein and fiber fractions of MGS were not affected by the type or level of additive and fermentation periods. The non-significant pH lactic acid concentration, and chemical composition of MGS indicated that the both molasses and crushed corn were utilized at similar rate for the growth of lactic acid bacteria and production of organic acids. The MG ensiled with molasses at 2% of fodder DM for 30 days was screened out for in situ digestion kinetics in Nili buffaloes. Ruminal DM and neutral detergent fiber (NDF) degradabilities of MGS were significantly (p<0.05) higher than that of MG. The DM and NDF rate of degradation, lag time and extent of degradation was nonsignificant between MGS and MG. The higher ruminal degradation of DM and NDF of MGS than MG was probably a reflection of fermentation of MG during ensilation that improved its degradability by improving the availability of easily degradable structural polysaccharides to ruminal microbial population. The results in the present study have indicated that MG ensiled with either 2% molasses or 2% crushed corn for 30 days has better nutritive value for buffalo.

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.