• Title/Summary/Keyword: ordinary differential equation

Search Result 256, Processing Time 0.021 seconds

Theoretical fabrication of Williamson nanoliquid over a stretchable surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ayed, Hamdi;Taj, Muhammad;Bhutto, Javed Khan;Mahmoud, S.R.;Iqbal, Zafer;Ahmad, Shabbir;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.103-113
    • /
    • 2022
  • On the basis of fabrication, the utilization of nano material in numerous industrial and technological system, obtained the utmost significance in current decade. Therefore, the current investigation presents a theoretical disposition regarding the flow of electric conducting Williamson nanoliquid over a stretchable surface in the presence of the motile microorganism. The impact of thermal radiation and magnetic parameter are incorporated in the energy equation. The concentration field is modified by adding the influence of chemical reaction. Moreover, the splendid features of nanofluid are displayed by utilizing the thermophoresis and Brownian motion aspects. Compatible similarity transformation is imposed on the equations governing the problem to derive the dimensionless ordinary differential equations. The Homotopy analysis method has been implemented to find the analytic solution of the obtained differential equations. The implications of specific parameters on profiles of velocity, temperature, concentration and motile microorganism density are investigated graphically. Moreover, coefficient of skin friction, Nusselt number, Sherwood number and density of motile number are clarified in tabular forms. It is revealed that thermal radiation, thermophoresis and Brownian motion parameters are very effective for improvement of heat transfer. The reported investigation can be used in improving the heat transfer appliances and systems of solar energy.

Application model research on visualizing anti-inflammation effects by using the virtual cell (가상세포를 활용한 항염증 효능 응용모델 연구)

  • Kim, Chul;Yea, Sang-Jun;Kim, Jin-Hyun;Kim, Sang-Kyun;Jang, Hyun-Chul;Kim, An-Na;Nam, Ky-Youb;Song, Mi-Young
    • Herbal Formula Science
    • /
    • v.18 no.2
    • /
    • pp.227-239
    • /
    • 2010
  • Objective : The purpose of this study was to develop the simulator which can analyze the anti-inflammatory effects of herbs based on e-cell, or the virtual cell. Method : We have ensured the medical herbs and its active compounds by investigating the oriental medicine records and NBCI(Biomedicine database). Also we have developed the web-based search system for confirming database related to anti-inflammation. We have researched the cell signal pathway related with inflammatory response control and established the mathematical model of herb interaction on selected signal pathway in e-cell. Finally we have developed the prototype which can confirm the result of this model visibly. Results : We constructed the database of 62 cases of anti-inflammatory active compounds in 61 cases of medical herbs which have been known anti-inflammation effects in the paper, 16 cases of inflammatory factors, 10 cases of signal pathways related with inflammatory response and 6,834 cases of URL(Uniform Resource Locator) of referenced papers. And we embodied the web-based research system, which can research this database. User can search basic and detailed information of medical plants related with anti-inflammatory by using information system. And user can acquire information on an active compounds, a signal pathway and a link URL of related paper. Among investigated ten pathways, we selected NF-${\kappa}B$, which plays important role in activation of immune system, and we searched the mechanisms of actions of proteins which could be components of this pathway. We reduced total network into IKK-$I{\kappa}B$ - NF-${\kappa}B$, and completed mathematic modeling by using ordinary differential equations and response variables of $I{\kappa}B-NF-{\kappa}B$ signaling model network which is suggested by Baltimore Group. We designed OED(Ordinary Differential Equation) for response of IKK, $I{\kappa}B$, $NF-{\kappa}B$ in e-cell's cytoplasm and nucleus, and measured whether an active compound of medicinal plants which is inputted by an user would have a anti-inflammation effects in obedience to change in concentration over time. The proposed model was verified by using experimental results of the papers which are listed on NCBI.

Unknown-Parameter Identification for Accurate Control of 2-Link Manipulator using Dual Extended Kalman Filter (2링크 매니퓰레이터 제어를 위한 듀얼 확장 칼만 필터 기반의 미지 변수 추정 기법)

  • Seung, Ji Hoon;Park, Jung Kil;Yoo, Sung Goo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, we described the unknown parameter identification using Dual Extended Kalman Filter for precise control of 2-link manipulator. 2-link manipulator has highly non-linear characteristic with changed parameter thought tasks. The parameter kinds of mass and inertia of system is important to handle with the manipulator robustly. To solve the control problem by estimating the state and unknown parameters of the system through the proposed method. In order to verify the performance of proposed method, we simulate the implementation using Matlab and compare with results of RLS algorithm. At the results, proposed method has a better performance than those of RLS and verify the estimation performance in the parameter estimation.

Computational Drug Discovery Approach Based on Nuclear Factor-κB Pathway Dynamics

  • Nam, Ky-Youb;Oh, Won-Seok;Kim, Chul;Song, Mi-Young;Joung, Jong-Young;Kim, Sun-Young;Park, Jae-Seong;Gang, Sin-Moon;Cho, Young-Uk;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4397-4402
    • /
    • 2011
  • The NF-${\kappa}B$ system of transcription factors plays a crucial role in inflammatory diseases, making it an important drug target. We combined quantitative structure activity relationships for predicting the activity of new compounds and quantitative dynamic models for the NF-${\kappa}B$ network with intracellular concentration models. GFA-MLR QSAR analysis was employed to determine the optimal QSAR equation. To validate the predictability of the $IKK{\beta}$ QSAR model for an external set of inhibitors, a set of ordinary differential equations and mass action kinetics were used for modeling the NF-${\kappa}B$ dynamic system. The reaction parameters were obtained from previously reported research. In the IKKb QSAR model, good cross-validated $q^2$ (0.782) and conventional $r^2$ (0.808) values demonstrated the correlation between the descriptors and each of their activities and reliably predicted the $IKK{\beta}$ activities. Using a developed simulation model of the NF-${\kappa}B$ signaling pathway, we demonstrated differences in $I{\kappa}B$ mRNA expression between normal and different inhibitory states. When the inhibition efficiency increased, inhibitor 1 (PS-1145) led to long-term oscillations. The combined computational modeling and NF-${\kappa}B$ dynamic simulations can be used to understand the inhibition mechanisms and thereby result in the design of mechanism-based inhibitors.

Evaluation Model and Experimental Validation of Tritium in Agricultural Plant (농작물의 삼중수소 오염평가 모델 개발 및 실험검증)

  • Kang Hee Suk;Keum Dong-kwon;Lee Hansoo;In Jun;Choi Yong Ho;Lee Chang Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.319-328
    • /
    • 2005
  • This paper describes a compartment dynamic model for evaluating the contamination level of kritium in agricultural plants exposed by accidentally released tritium. The present model uses a time-dependent growth equation of plant so that it can predict the effect of growth stage of plant during the exposure time. The model including atmosphere, soil and plant compartments is described by a set of nonlinear ordinary differential equations, and is able to predict time-dependent concentrations of tritium in the compartments. To validate the model, a series of exposure experiments of HTO vapor on Chinese cabbage and radish was carried out at the different growth stage of each plant. At the end of exposure, the tissue free water(TFWT) and the organically bound tritium(OBT) were measured. The measured concentrations were agreed well with model predictions.

  • PDF

Effects of Time-Varying Mass on the Dynamic Behavior of a Descending Parachute System (질량 감소가 낙하산 시스템의 하강 고도 변화에 미치는 효과)

  • Jang, Woo-Young;Baek, Sang-Tae;Myong, Rho-Shin;Jin, Yeon-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Accurate prediction of the trajectory and time of a time-varying mass parachute system remains essential in the mission requiring a precision airdrop to the ground. In this study, we investigate the altitude-varying behavior of a cross-type parachute system designed to deliver a time-varying mass object like flare. The dynamics of the descending parachute system was analyzed based on the Runge-Kutta method of the ordinary differential system. The drag coefficients of the cross-type parachute and flare were calculated by a CFD code based on the incompressible Navier-Stokes equation. Finally, by using a simplified gust wind model in troposphere, the combined effects of gust wind and time-varying mass were examined in detail.

The Phase Space Analysis of 3D Vector Fields (3차원 벡터 필드의 위상 공간 분석)

  • Jung, Il-Hong;Kim, Yong Soo
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.909-916
    • /
    • 2015
  • This paper presents a method to display the 3D vector fields by analyzing phase space. This method is based on the connections between ordinary differential equations and the topology of vector fields. The phase space analysis should be geometric interpolation of an autonomous system of equation in the form of the phase space. Every solution of it system of equations corresponds not to a curve in a space, but the motion of a point along the curve. This analysis is the basis of this paper. This new method is required to decompose the hexahedral cell into five or six tetrahedral cells for 3D vector fields. The critical points can be easily found by solving a simple linear system for each tetrahedron. The tangent curves can be integrated by finding the intersection points of an integral curve traced out by the general solution of each tetrahedron and plane containing a face of the tetrahedron.

Analysis of Carbon Dioxide Separation with Countercurrent Flow in Hollow Fiber Membrane by Numerical Analysis (수치해석에 의한 향류 흐름 중공사 분리막의 이산화탄소 분리 성능 해석)

  • Lee, Yong-Taek;Song, In-Ho;Ahn, Hyo-Seong;Lee, Young-Jin;Jeon, Hyun-Soo;Kim, Jeong-Hoon;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.252-258
    • /
    • 2006
  • A numerical analysis was performed for a separation process of carbon dioxide from a flue gas stream using polyethersulfone hollow fiber membranes. Countercurrent flow governing equations were regarded to be two point boundary-value problem and the nonlinear ordinary differential equation were simultaneously solved using the finite- difference method. A computer program was developed using the Compaq Visual Fortran 6.6 software. The carbon dioxide permeate driving force and the fred gas residence time at the inside of membrane were found to be very important factors affecting the permeation characteristics of carbon dioxide. The carbon dioxide concentration in the permeate and the flow rate of the permeate were found to be slightly larger by a few percent with a countercurrent flow analysis than those with a cocurrent flow analysis.

An analytic solution for the stirling engines with saw-toothed piston motions in adiabatic cylinders (단열실린더내에서 톱날파형 피스톤운동을 하는 스터링기관에 대한 해석적인 해)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1197-1205
    • /
    • 1988
  • An analytical method to predict qualitative performance characteristics of the Stirling Engines in the preliminary design stages is investigated. Both the expansion and the compression cylinder are treated as adiabatic and piston motions are approximated as saw-toothed waves. Basic equations which were originally proposed by Finkelstein consist of mass conservation and energy balances for each adiabatic cylinder. The approximation on piston motions and physical conditions make it possible to divide an engine cycle into four fundamental processes. In each process, first, pressure can be expressed as a function of the crank angle by solving a nonlinear first order ordinary differential equation and other thermodynamic variables are determined in turn. Application of the cyclic steady condition to the whole processes can complete a cycle. Also, further analysis results in analytic expressions for cyclic work and heat transfer in terms of the engine parameters and thermodynamic variables at boundary points. The results are expected useful as a quick reference for the engine performances. Finally, the present method can be applied to the other adiabatic analyses on the Stirling Engines with piece wise linear piston motions, if mass variations are predictable.

Modeling Framework for Continuous Dynamic Systems Using Machine Learning of Hypothetical Model (가설적 모델의 기계학습을 이용한 연속시간 동적시스템 모델링 프레임워크)

  • Hae Sang Song;Tag Gon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • This paper proposes a method of automatically generating a model through a machine learning technique by setting a hypothetical model in the form of a gray box or black box with unknown parameters, when the big data of the actual system is given. We implements the proposed framework and conducts experiments to find an appropriate model among various hypothesis models and compares the cost and fitness of them. As a result we find that the proposed framework works well with continuous systems that could be modeled with ordinary differential equation. This technique is expected to be used well for the purpose of automatically updating the consistency of the digital twin model or predicting the output for new inputs using recently generated big data.