• Title/Summary/Keyword: ordering reaction

Search Result 32, Processing Time 0.017 seconds

Effects of Surface Microstructure on Microwave Dielectric Properties of ZrO2-NiO added Ba(Zn1/3Ta2/3)O3 Ceramics (ZrO2와 NiO가 첨가된 Ba(Zn1/3Ta2/3)O3에서 표면 미세조직이 고주파 유전특성에 미치는 영향)

  • Kang, Sung-Woo;Kim, Tae-Heui;Moon, Joo-Ho;Kim, Sung-Youl;Park, Jun-Young;Choi, Sun-Hee;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.701-706
    • /
    • 2008
  • High frequency dielectric ceramics have potential for applications in mobile and satellite communications systems at frequencies higher than 10GHz. The Ba$(Zn_{1/3}Ta_{2/3})O_3$ ceramics are known to have a high quality factor, a small temperature coefficient of the resonance frequency and a high dielectric constant. On the other hands, sintering at high temperature for extended time is required to obtain the ordered structure for high quality factor. In this study, the microwave dielectric properties of $ZrO_2$ and NiO-added Ba$(Zn_{1/3}Ta_{2/3})O_3$ ceramics prepared by solid-state reaction have been investigated. Adding $ZrO_2$ and NiO could effectively promote the densification even the case of decreasing the sintering time. At the surface of samples, secondary phase of Ba-Ta compounds was formed possibly due to the evaporation of ZnO, however, the interior of the samples remained as pure Ba$(Zn_{1/3}Ta_{2/3})O_3$. The samples sintered at $1600^{\circ}C$ for 2h exhibited 1:2 ordering of Zn and Ta cations. Excellent microwave dielectric properties of $Q{\cdot}f$(>96,000 GHz) and ${\varepsilon}_r$=30 has been obtained.

Physical Properties of the Nonstoichiometric Perovskite $Dy_{1-x}Sr_xCoO_{3-y}$ System

  • 정수경;김민규;김규홍;여철현
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.794-798
    • /
    • 1996
  • Solid solutions of the nonstoichiometric Dy1-xSrxCoO3-y system with the compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been synthesized by the solid state reaction at 1000 ℃ under atmospheric air pressure. The crystallographic structures of the solid solutions are analyzed by the powder X-ray diffraction patterns at room temperature. The analyses assign the compositions of x=0.00 and 0.25 to the orthorhombic system with space group of Pbnm/D2h16, the compositions of x=0.50 and 0.75 to the tetragonal system like a typical SrCoO2.86, and the composition of x=l.00 or SrCoO2.50 to the brownmillerite type system with space group of I**a. The reduced lattice volumes increase with x value due to the larger radius of Sr2+ ion than that of Dy3+ ion. The mole ratio of Co4+ ion to total Co ion with mixed valence state between Co3+ and Co4+ ions at B sites or τ value has been determined by an iodometric titration. All the samples except for the DyCoO3 compound show the mixed valnce state and thus the composition of x=0.50 has the maximum τ value in the system. The oxygen vacancies increasing with x value are randomly distributed over the crystal lattice except for the composition of x=l.00 which have the ordering of the oxygen vacancies. The nonstoichiometric chemical formulas of the Dy1-xSrxCo3+1-τCo4+τO3-(x-τ)/2 system are formulated from the x, τ, and y values. The electrical conductivity in the temperature range of 100 to 900 K increases with τ value linearly because of positive holes of the Co4+ ions in π* band as a conducting carrier. The activation energy of the x=0.50 as Ea=0.17 eV is minimum among other compouds. Broad and high order transition due to the overlap between σ* and π* bands broadened by the thermal activation is observed near 1000 K and shows a low temperature-semiconducting behavior. Magnetic properties following the Currie-Weiss law show the low to high spin transition in the cobaltate perovskite. Especially, the composition of x=0.75 presents weak ferromagnetic behavior due to the Co3+-O2--Co4+ indirect superexchange interaction.