• 제목/요약/키워드: order selection method

검색결과 1,214건 처리시간 0.034초

튜닝 가능한 자원선택 방법론 (Methodologies to Selecting Tunable Resources)

  • 김혜숙;오정석
    • Journal of Information Technology Applications and Management
    • /
    • 제15권1호
    • /
    • pp.271-282
    • /
    • 2008
  • Database administrators are demanded to acquire much knowledges and take great efforts for keeping consistent performance in system. Various principles, methods, and tools have been proposed in many studies and commercial products in order to alleviate such burdens on database administrators, and it has resulted to the automation of DBMS which reduces the intervention of database administrator. This paper suggests a resource selection method that estimates the status of the database system based on the workload characteristics and that recommends tuneable resources. Our method tries to simplify selection information on DBMS status using data-mining techniques, enhance the accuracy of the selection model, and recommend tuneable resource. For evaluating the performance of our method, instances are collected in TPC-C and TPC-W workloads, and accuracy are calculated using 10 cross validation method, comparisons are made between our scheme and the method which uses only the classification procedure without any simplification of informations. It is shown that our method has over 90% accuracy and can perform tuneable resource selection.

  • PDF

3차원 조형장비 선정을 위한 복합 다요소 의사결정 구조 모델 개발에 관한 연구 (A decision making framework model for the selection of a RP using hybrid multiple attribute decision making techniques)

  • 변홍석
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.87-95
    • /
    • 2008
  • The purpose of this study is to provide a decision support to select an appropriate rapid prototyping(RP) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model for molding, material property, build time and part cost that greatly affect the performance of RP machines. However, the selection of a RP is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate RP machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify RP machines that the users consider. After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of RP machines.

  • PDF

A Novel Feature Selection Method in the Categorization of Imbalanced Textual Data

  • Pouramini, Jafar;Minaei-Bidgoli, Behrouze;Esmaeili, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3725-3748
    • /
    • 2018
  • Text data distribution is often imbalanced. Imbalanced data is one of the challenges in text classification, as it leads to the loss of performance of classifiers. Many studies have been conducted so far in this regard. The proposed solutions are divided into several general categories, include sampling-based and algorithm-based methods. In recent studies, feature selection has also been considered as one of the solutions for the imbalance problem. In this paper, a novel one-sided feature selection known as probabilistic feature selection (PFS) was presented for imbalanced text classification. The PFS is a probabilistic method that is calculated using feature distribution. Compared to the similar methods, the PFS has more parameters. In order to evaluate the performance of the proposed method, the feature selection methods including Gini, MI, FAST and DFS were implemented. To assess the proposed method, the decision tree classifications such as C4.5 and Naive Bayes were used. The results of tests on Reuters-21875 and WebKB figures per F-measure suggested that the proposed feature selection has significantly improved the performance of the classifiers.

패턴 인식문제를 위한 유전자 알고리즘 기반 특징 선택 방법 개발 (Genetic Algorithm Based Feature Selection Method Development for Pattern Recognition)

  • 박창현;김호덕;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.466-471
    • /
    • 2006
  • 패턴 인식 문제에서 중요한 전처리 과정 중 하나는 특정을 선택하거나 추출하는 부분이다. 특정을 추출하는 방법으로는 PCA가 보통 사용되고 특정을 선택하는 방법으로는 SFS 나 SBS 등의 방법들이 자주 사용되고 있다. 본 논문은 진화 연산 방법으로써 비선형 최적화 문제에서 유용하게 사용되어 지고 있는 유전자 알고리즘을 특정 선택에 적용하는 유전자 알고리즘 특정 선택 (Genetic Algorithm Feature Selection: GAFS)방법을 개발하여 다른 특징 선택 알고리즘과의 비교를 통해 본 알고리즘의 성능을 관찰한다.

다차원 개체를 위한 차이등급 clustering (The Difference Order Clustering for Multi-dimensional Entities)

  • 이철;강석호
    • 한국경영과학회지
    • /
    • 제14권1호
    • /
    • pp.108-118
    • /
    • 1989
  • The clustering problem for multi-dimensional entities is investigated. A heuristic method, which is named as Difference Order Clustering (DOC) is developed for the grouping of multi-dimensional entities DOC method has an advantage of identifying the bottle-neck entities. Comparisons among the proposed DOC method, modified rank order clustering (MODROC) method, and lexicographical rank order clustering using minimum spanning tree (lexico-MMSTROC) are illustrated by a part type selection problems.

  • PDF

TOPSIS-Based Decision-Making Model for Demolition Method Selection

  • Lee, Hyung Yong;Cho, Jae Ho;Son, Bo Sik;Chae, Myung Jin;Lim, Nam Gi;Chun, Jae Youl
    • Architectural research
    • /
    • 제23권4호
    • /
    • pp.67-73
    • /
    • 2021
  • An efficient demolition process requires the optimum method selection considering stability, economic feasibility, environment, and workability. In reality the construction cost and period are priority concerns, and safe construction methods are neglected. In addition, the choosing demolition method is often determined subjectively by experienced field engineers. This research paper presents a multi-criteria decision-making method using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to select the optimum demolition method. Three experienced demolition engineers' opinions were used to develop the TOPSIS model. The case study showed that the preferences of ten attribute measurements for demolition method selection. Authors suggested the most preferable demolition method for the case study project.

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

곡률 정보를 이용한 정점 선택 기법 (Vertex Selection method using curvature information)

  • 윤병주;이시웅;강현수;김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.505-508
    • /
    • 2003
  • The current paper proposes a new vertex selection scheme for polygon-based contour ceding. To efficiently characterize the shape of an object, we incorporate the curvature information in addition to the conventional maximum distance criterion in vertex selection process. The proposed method consists of “two-step procedure.” At first, contour pixels of high curvature value are selected as key vertices based on the curvature scale space (CSS), thereby dividing an overall contour into several contour-segments. Each segment is considered as an open contour whose end points are two consecutive key vertices and is processed independently. In the second step, vertices for each contour segment are selected using progressive vertex selection (PVS) method in order to obtain minimum number of vertices under the given maximum distance criterion ( $D_{MAX}$). Experimental results are presented to compare the approximation performances of the proposed and conventional methods.s.

  • PDF

Feature Selection Based on Bi-objective Differential Evolution

  • Das, Sunanda;Chang, Chi-Chang;Das, Asit Kumar;Ghosh, Arka
    • Journal of Computing Science and Engineering
    • /
    • 제11권4호
    • /
    • pp.130-141
    • /
    • 2017
  • Feature selection is one of the most challenging problems of pattern recognition and data mining. In this paper, a feature selection algorithm based on an improved version of binary differential evolution is proposed. The method simultaneously optimizes two feature selection criteria, namely, set approximation accuracy of rough set theory and relational algebra based derived score, in order to select the most relevant feature subset from an entire feature set. Superiority of the proposed method over other state-of-the-art methods is confirmed by experimental results, which is conducted over seven publicly available benchmark datasets of different characteristics such as a low number of objects with a high number of features, and a high number of objects with a low number of features.

목표계획법을 이용한 사단급 ASL 선정 모형에 관한 연구 (A Study on an Authorized Stockage List Selection Model)

  • 김충영;길계호
    • 한국국방경영분석학회지
    • /
    • 제25권1호
    • /
    • pp.75-86
    • /
    • 1999
  • The selection criteria of an Authorized Stockage List (ASL) in the Army is based on Army Regulation(AR)409. However, the current selection method of ASL is not considered in cost, weight and volume of repair parts. This paper is focused on developing for a new selection model taking account of cost, weight and volume of repair parts. Goal programming is utilized in order to consider weighted priorities. Different units of cost, and volume are normalized for using weighing value. Real data of a field division are applied to the model. Results of the new selection model are more reduced in cost, weight and volume than those of the previous method.

  • PDF