• Title/Summary/Keyword: order of accuracy

Search Result 6,356, Processing Time 0.034 seconds

Classification Modeling for Predicting Medical Subjects using Patients' Subjective Symptom Text (환자의 주관적 증상 텍스트에 대한 진료과목 분류 모델 구축)

  • Lee, Seohee;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • In the field of medical artificial intelligence, there have been a lot of researches on disease prediction and classification algorithms that can help doctors judge, but relatively less interested in artificial intelligence that can help medical consumers acquire and judge information. The fact that more than 150,000 questions have been asked about which hospital to go over the past year in NAVER portal will be a testament to the need to provide medical information suitable for medical consumers. Therefore, in this study, we wanted to establish a classification model that classifies 8 medical subjects for symptom text directly described by patients which was collected from NAVER portal to help consumers choose appropriate medical subjects for their symptoms. In order to ensure the validity of the data involving patients' subject matter, we conducted similarity measurements between objective symptom text (typical symptoms by medical subjects organized by the Seoul Emergency Medical Information Center) and subjective symptoms (NAVER data). Similarity measurements demonstrated that if the two texts were symptoms of the same medical subject, they had relatively higher similarity than symptomatic texts from different medical subjects. Following the above procedure, the classification model was constructed using a ridge regression model for subjective symptom text that obtained validity, resulting in an accuracy of 0.73.

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).

A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)

  • Kim, Sang-Gook;Lim, Jung-Sun;Park, Wan
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.

Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning (비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발)

  • Min, Jiyoung;Yu, Byeongjun;Kim, Jonghyeok;Jeon, Haemin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.28-36
    • /
    • 2022
  • As port structures are exposed to various extreme external loads such as wind (typhoons), sea waves, or collision with ships; it is important to evaluate the structural safety periodically. To monitor the port structure, especially the rubber fender, a fender segmentation system using a vision sensor and deep learning method has been proposed in this study. For fender segmentation, a new deep learning network that improves the encoder-decoder framework with the receptive field block convolution module inspired by the eccentric function of the human visual system into the DenseNet format has been proposed. In order to train the network, various fender images such as BP, V, cell, cylindrical, and tire-types have been collected, and the images are augmented by applying four augmentation methods such as elastic distortion, horizontal flip, color jitter, and affine transforms. The proposed algorithm has been trained and verified with the collected various types of fender images, and the performance results showed that the system precisely segmented in real time with high IoU rate (84%) and F1 score (90%) in comparison with the conventional segmentation model, VGG16 with U-net. The trained network has been applied to the real images taken at one port in Republic of Korea, and found that the fenders are segmented with high accuracy even with a small dataset.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Development of a Failure Probability Model based on Operation Data of Thermal Piping Network in District Heating System (지역난방 열배관망 운영데이터 기반의 파손확률 모델 개발)

  • Kim, Hyoung Seok;Kim, Gye Beom;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.322-331
    • /
    • 2017
  • District heating was first introduced in Korea in 1985. As the service life of the underground thermal piping network has increased for more than 30 years, the maintenance of the underground thermal pipe has become an important issue. A variety of complex technologies are required for periodic inspection and operation management for the maintenance of the aged thermal piping network. Especially, it is required to develop a model that can be used for decision making in order to derive optimal maintenance and replacement point from the economic viewpoint in the field. In this study, the analysis was carried out based on the repair history and accident data at the operation of the thermal pipe network of five districts in the Korea District Heating Corporation. A failure probability model was developed by introducing statistical techniques of qualitative analysis and binomial logistic regression analysis. As a result of qualitative analysis of maintenance history and accident data, the most important cause of pipeline damage was construction erosion, corrosion of pipe and bad material accounted for about 82%. In the statistical model analysis, by setting the separation point of the classification to 0.25, the accuracy of the thermal pipe breakage and non-breakage classification improved to 73.5%. In order to establish the failure probability model, the fitness of the model was verified through the Hosmer and Lemeshow test, the independent test of the independent variables, and the Chi-Square test of the model. According to the results of analysis of the risk of thermal pipe network damage, the highest probability of failure was analyzed as the thermal pipeline constructed by the F construction company in the reducer pipe of less than 250mm, which is more than 10 years on the Seoul area motorway in winter. The results of this study can be used to prioritize maintenance, preventive inspection, and replacement of thermal piping systems. In addition, it will be possible to reduce the frequency of thermal pipeline damage and to use it more aggressively to manage thermal piping network by establishing and coping with accident prevention plan in advance such as inspection and maintenance.

Perceptions of Quality Nursing care of Patients and Families (질적 간호에 대한 환자와 가족의 지각)

  • Chi, Sung-Ai;Kwon, Sung-Bok;Park, Eun-Hee
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.4 no.1
    • /
    • pp.247-275
    • /
    • 1998
  • The purpose of this study was to offer the results of content analysis and qualitative study that explored the perceptions about quality nursing care of patients and families as consumers and to identify the implications of this study for quality nursing care management and research. The data was collected from 12 adult patients and 9 families who were admmitted at medical and surgical nursing unit of one university hospital in Seoul from October, 1996 to January, 1997. Research participants were asked to response "what do you think quality nursing care?" and similar questions during the interviews was performed. Data were analyzed using open coding and content analysis with frequencies and percents of attributes of quality nursing care. Attributes of quality nursing care and meaning of quality nursing care that patients and families perceived were explored. 1. The attributes of quality nursing care that patient and families perceived were categorized into 56 attributes. The highest response rate among the attributes was 'one's heart at ease' (76.2%), and the next high response rates were ranked in order 'consideration' , 'care about' (each 61.9% 'expert skill' (57.1%), 'deal with problem promptly' , 'information offer' (42.9%), 'intimate feeling' (38.1%), 'smile' 'service spirit' , 'do one's best' (each 33.3%), 'frequent visit' (23.8%), 'observe the time' (23.8%), 'direct nursing care' , 'speaking warmly' , give a hope' , 'address kindly' , 'a sense of duty' , 'good facilities' (each 19.0%), 'inquire after a patient health' , 'patient-centered nursing care' , 'showing an example' , 'professional knowledge' , 'careless moraly patient' , 'give encourage to patients' , 'good answer a question' (each 14.3%), 'do not imprudently' , 'do not disregard' , 'broad knowledge' , 'emergency treatment skill' , 'dependability' ,'consolation' giving a sense of security' , 'a self sacrificing spirit' , 'a sense of responsibility' 'hard - working', 'enough disposition of nursing staff (each 9.5%), 'improve patient's pride' and the rest attributes exhibited 4.7%, respectively. 2. The attributes that were identified in patients' data only were 8 categories, 'service sprit' (58.3 %) 'expert knowledge' , 'good answer a question' (each 25.0%), 'hard working' (16.7%), 'a warm character', 'professional attainments', 'do without reserve', 'satisfaction' (each 8.3%), 3. The attributes were identified to families' data only were 31 categories, 'speaking warmly' , 'direct nursing care', 'adress kindly', 'patientcentered nursing care', 'showing an example' (each 33.3%). 'do not imprudently' , 'do not disregard' , 'consolation', 'giving a sense of security', 'broad knowledge' , 'emergency treatment skill', 'dependability' ,'a self - sacrificing spirit', 'a sense of responsibility' (each 22.2%), 'improve patient's pride' , 'without discrimination' , 'show kindness' , 'individual nursing care', 'being with patient' , 'helping' , 'accuracy' , 'without any mistake' , 'love' , 'self - confidence', 'self possession', 'a self - denying spirit' , 'a sense of duty' , 'tighten discipline' , 'disposed room with similar patient to diagnosis', 'compensatory relationship between me dical team' , 'role of connection' (each 11.1 %). 4. The attributes of quality nursing care were integrated into 11 categories that they were 'patientcentered nursing care' (25.1%), 'expertise' (22.1%), 'caring'(18.1%), 'kindness'(11.1%L 'nurse attainments(10.1%), 'sincerity' (7.5%), 'good environment' (2.0%), 'effective organizational management', 'coordination', 'enough nursing staff' ( each 1.0%), 'satisfaction' (0.5%) were showed in the order of the highest rate. 5. The concept of quality nursing care were defined as 'give a satisfaction to patients by patientcentered care based on professional skill and caring with kindness and sincerity'. The description of the meaning of quality nursing care provided by this research participants, patients and families can provide important information for quality nursing care management, medical marketing, education and researches of this field. On the basis of the above findings the following recommendations are made: to suggest to utilize this results for patient care in practice setting, development of quality assessment tool in nursing care, repeat study by the same subjects and method, and to a comparative study by the same method to nurse.

  • PDF

Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base (지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구)

  • Kim, JaeHun;Lee, Myungjin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.43-61
    • /
    • 2019
  • Development of technologies in artificial intelligence has been rapidly increasing with the Fourth Industrial Revolution, and researches related to AI have been actively conducted in a variety of fields such as autonomous vehicles, natural language processing, and robotics. These researches have been focused on solving cognitive problems such as learning and problem solving related to human intelligence from the 1950s. The field of artificial intelligence has achieved more technological advance than ever, due to recent interest in technology and research on various algorithms. The knowledge-based system is a sub-domain of artificial intelligence, and it aims to enable artificial intelligence agents to make decisions by using machine-readable and processible knowledge constructed from complex and informal human knowledge and rules in various fields. A knowledge base is used to optimize information collection, organization, and retrieval, and recently it is used with statistical artificial intelligence such as machine learning. Recently, the purpose of the knowledge base is to express, publish, and share knowledge on the web by describing and connecting web resources such as pages and data. These knowledge bases are used for intelligent processing in various fields of artificial intelligence such as question answering system of the smart speaker. However, building a useful knowledge base is a time-consuming task and still requires a lot of effort of the experts. In recent years, many kinds of research and technologies of knowledge based artificial intelligence use DBpedia that is one of the biggest knowledge base aiming to extract structured content from the various information of Wikipedia. DBpedia contains various information extracted from Wikipedia such as a title, categories, and links, but the most useful knowledge is from infobox of Wikipedia that presents a summary of some unifying aspect created by users. These knowledge are created by the mapping rule between infobox structures and DBpedia ontology schema defined in DBpedia Extraction Framework. In this way, DBpedia can expect high reliability in terms of accuracy of knowledge by using the method of generating knowledge from semi-structured infobox data created by users. However, since only about 50% of all wiki pages contain infobox in Korean Wikipedia, DBpedia has limitations in term of knowledge scalability. This paper proposes a method to extract knowledge from text documents according to the ontology schema using machine learning. In order to demonstrate the appropriateness of this method, we explain a knowledge extraction model according to the DBpedia ontology schema by learning Wikipedia infoboxes. Our knowledge extraction model consists of three steps, document classification as ontology classes, proper sentence classification to extract triples, and value selection and transformation into RDF triple structure. The structure of Wikipedia infobox are defined as infobox templates that provide standardized information across related articles, and DBpedia ontology schema can be mapped these infobox templates. Based on these mapping relations, we classify the input document according to infobox categories which means ontology classes. After determining the classification of the input document, we classify the appropriate sentence according to attributes belonging to the classification. Finally, we extract knowledge from sentences that are classified as appropriate, and we convert knowledge into a form of triples. In order to train models, we generated training data set from Wikipedia dump using a method to add BIO tags to sentences, so we trained about 200 classes and about 2,500 relations for extracting knowledge. Furthermore, we evaluated comparative experiments of CRF and Bi-LSTM-CRF for the knowledge extraction process. Through this proposed process, it is possible to utilize structured knowledge by extracting knowledge according to the ontology schema from text documents. In addition, this methodology can significantly reduce the effort of the experts to construct instances according to the ontology schema.

Measurement of Image Quality According to the Time of Computed Radiography System (시간에 따르는 CR장비의 영상의 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Hwang, Sun-Kwang;Lee, Ik-Pyo;Kim, Ki-Won;Jung, Jae-Yong;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.365-374
    • /
    • 2015
  • The regular quality assurance (RQA) of X-ray images is essential for maintaining a high accuracy of diagnosis. This study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) of a computed radiography (CR) system for various periods of use from 2006 to 2015. We measured the pre-sampling MTF using the edge method and RQA 5 based on commission standard international electro-technical commission (IEC). The spatial frequencies corresponding to the 50% MTF for the CR systems in 2006, 2009, 2012 and 2015 were 1.54, 1.14, 1.12, and $1.38mm^{-1}$, respectively and the10% MTF for 2006, 2009, 2012, and 2015 were 2.68, 2.44, 2.44, and $2.46mm^{-1}$, respectively. In the NPS results, the CR systems showed the best noise distribution in 2006, and with the quality of distributions in the order of 2015, 2009, and 2012. At peak DQE and DQE at $1mm^{-1}$, the CR systems showed the best efficiency in 2006, and showed better efficiency in order of 2015, 2009, and 2012. Because the eraser lamp in the CR systems was replaced, the image quality in 2015 was superior to those in 2009 and 2012. This study can be incorporated into used in clinical QA requiring performance and evaluation of the performance of the CR systems.