• Title/Summary/Keyword: orbiter

Search Result 113, Processing Time 0.039 seconds

Development of Kinematic Ephemeris Generator for Korea Pathfinder Lunar Orbiter (KPLO)

  • Song, Min-Sup;Park, Sang-Young;Kim, Youngkwang;Yim, Jo Ryeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2020
  • This paper presents a kinematic ephemeris generator for Korea Pathfinder Lunar Orbiter (KPLO) and its performance test results. The kinematic ephemeris generator consists of a ground ephemeris compressor and an onboard ephemeris calculator. The ground ephemeris compressor has to compress desired orbit propagation data by using an interpolation method in a ground system. The onboard ephemeris calculator can generate spacecraft ephemeris and the Sun/Moon ephemeris in onboard computer of the KPLO. Among many interpolation methods, polynomial interpolation with uniform node, Chebyshev interpolation, Hermite interpolation are tested for their performances. As a result of the test, it is shown that all the methods have some cases that meet requirements but there are some performance differences. It is also confirmed that, the Chebyshev interpolation shows better performance than other methods for spacecraft ephemeris generation, and the polynomial interpolation with uniform nodes yields good performance for the Sun/Moon ephemeris generation. Based on these results, a Kinematic ephemeris generator is developed for the KPLO mission. Then, the developed ephemeris generator can find an approximating function using interpolation method considering the size and accuracy of the data to be transmitted.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

Korea Pathfinder Lunar Orbiter Flight Dynamics Simulation and Rehearsal Results for Its Operational Readiness Checkout

  • Song, Young-Joo;Bae, Jonghee;Hong, SeungBum;Bang, Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.181-194
    • /
    • 2022
  • Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software's readiness and enhance the operator's contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams' ability to overcome the challenges in a realistic flight and FD software's reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.

Post Trajectory Insertion Performance Analysis of Korea Pathfinder Lunar Orbiter Using SpaceX Falcon 9

  • Young-Joo Song;Jonghee Bae;SeungBum Hong;Jun Bang;Donghun Lee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.123-129
    • /
    • 2023
  • This paper presents an analysis of the trans-lunar trajectory insertion performance of the Korea Pathfinder Lunar Orbiter (KPLO), the first lunar exploration spacecraft of the Republic of Korea. The successful launch conducted on August 4, 2022 (UTC), utilized the SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station. The trans-lunar trajectory insertion performance plays a crucial role in ensuring the overall mission success by directly influencing the spacecraft's onboard fuel consumption. Following separation from the launch vehicle (LV), a comprehensive analysis of the trajectory insertion performance was performed by the KPLO flight dynamics (FD) team. Both orbit parameter message (OPM) and orbit determination (OD) solutions were employed using deep space network (DSN) tracking measurements. As a result, the KPLO was accurately inserted into the ballistic lunar transfer (BLT) trajectory, satisfying all separation requirements at the target interface point (TIP), including launch injection energy per unit mass (C3), right ascension of the injection orbit apoapsis vector (RAV), and declination of the injection orbit apoapsis vector (DAV). The precise BLT trajectory insertion facilitated the smoother operation of the KPLO's remainder mission phase and enabled the utilization of reserved fuel, consequently significantly enhancing the possibilities of an extended mission.

ShadowCam Instrument and Investigation Overview

  • Mark Southwick Robinson;Scott Michael Brylow;Michael Alan Caplinger;Lynn Marie Carter;Matthew John Clark;Brett Wilcox Denevi;Nicholas Michael Estes;David Carl Humm;Prasun Mahanti;Douglas Arden Peckham;Michael Andrew Ravine;Jacob Andrieu Schaffner;Emerson Jacob Speyerer;Robert Vernon Wagner
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.149-171
    • /
    • 2023
  • ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.

Design and Analysis of Korean Lunar Orbiter Mission using Direct Transfer Trajectory (직접 전이궤적을 이용한 한국형 달 궤도선 임무설계 및 분석)

  • Choi, Su-Jin;Song, Young-Joo;Bae, Jonghee;Kim, Eunhyeuk;Ju, Gwanghyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.950-958
    • /
    • 2013
  • The Lunar orbiter is expected to be inserted into a ~300km low Earth orbit using Korea Space Launch Vehicle-II(KSLV-II). After the states are successfully determined with obtained tracking data, the Trans Lunar Injection(TLI) burn has to be done at appropriate epoch to send the lunar orbiter to the Moon. In this study, we describe in detail the mission scenario of the Korean lunar orbiter from the launch at NARO Space Center to lunar orbit insertion(LOI) stage following direct transfer trajectory. We investigate the launch window including launch azimuth, delta-V profile according to TLI and LOI burn positions. We also depict the visibility conditions of ground stations and solar eclipse duration to understand the characteristics of the direct transfer trajectory. This paper can be also helpful not only for overall understanding of ${\Delta}V$ trend by changing TOF and coasting time but for selecting launch epoch and control parameters to decrease fuel consumption.

KMAG payload instrument of Korea Pathfinder Lunar Orbiter

  • Jin, Ho;Kim, Khan-Hyuck;Son, Derac;Lee, Seongwhan;Lee, Hyojeong;Lee, Jung-Kyu;Lee, Mangyu;Lee, Seungah;Shin, Jehyuck;Garrick-Bethell, Ian
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.89.2-89.2
    • /
    • 2017
  • Korea Pathfinder Lunar Orbiter (KPLO) is a first Korean Lunar exploration mission. KPLO is equipped with four payloads in Korea and one payload in United States. KMAG is one of Korean payloads to measure the Moon's magnetic field. Moon has a no dipole magnetic field such as earth's global magnetic field. But there are many curious crustal magnetic anomalies. these features still do not well understood. This is a main scientific objective of KMAG payload and the study of space environment around moon is a second objective. KMAG has three magnetometers which are mounted in the edge of the 1.2 meter boom. This paper shows a KMAG's requirements, instrument description, and a preliminary function test results.

  • PDF

KARI Planetary Data System for Science Research Support in Korea Pathfinder Lunar Orbiter Program

  • Kim, Joo Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.55.3-55.3
    • /
    • 2019
  • 우리나라 최초의 우주탐사 프로그램인 Korea Pathfinder Lunar Orbiter (KPLO)는 1년의 임무기간동안 달과 달 주변의 우주환경에 대한 과학탐사 임무를 수행할 예정이다. 이를 위해서 1개에 기술 검증장비와 고해상도 카메라를 포함한 5개의 과학장비를 탑재할 예정이다. 이 중 고해상도 카메라인 LUTI(LUnar Terrain Imager)와 국내에서 개발한 3개의 과학탑재체(KGRS;감마선분광기, KMAG;자기장측정기, PolCam;광시야 편광카메라)가 획득한 과학자료는 일정기간(통상 1년)동안 비공개로 검보정이 이루어진 후 일반에게 공개(Public release)할 예정이다. 이러한 과학자료의 공개와 관리를 위해서 한국항공우주연구원은 KPLO 심우주 지상시스템 내에 과학자료의 공개 및 관리를 위한 KARI Planetary Data System(KPDS)을 개발하고 있다. KPDS는 미국 NASA의 PDS에서 개발하여 유럽, 일본 등에서 이미 행성탐사 과학자료의 표준으로 활용하고 있는 PDS4 표준을 준수하는 과학자료를 제공할 것이다. 본 발표를 통해서 KPDS의 운영개념과 과학자료 관리계획, 그리고 KPDS의 개발현황을 천문학계와 공유하여 KPLO에 의해서 획득된 과학자료가 많은 과학자들이 활용하여 높은 과학적 성과를 낼 수 있기를 기대한다.

  • PDF

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory (지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석)

  • Choi, Su-Jin;Lee, Dong-Hun;Suk, Byong-Suk;Min, Seung-Yong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.35-40
    • /
    • 2016
  • Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.