• Title/Summary/Keyword: orbiter

Search Result 113, Processing Time 0.021 seconds

Mission Design for a Lunar Orbiter Launched by KSLV-II (한국형발사체를 사용한 달궤도선의 임무 설계)

  • Song, Eun-Jung;Park, Chang-Su;Cho, Sang-Bum;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.108-116
    • /
    • 2009
  • This paper considers the trajectory design problem for a lunar orbiter when launched by KSLV-II. KSLV-II puts its kick motor stage and lunar orbiter into a low earth orbit, and then the kick motor stage performed the translunar injection. To simulate more realistic situations, TLI (Trans-Lunar Injection) and LOI (Lunar Orbit Injection) maneuvers are modeled as finite burns. The feasibility of the lunar mission by KSLV-II are confirmed by the numerical results that show the reasonable required-velocity and propellant usage.

  • PDF

Development of De-orbiter using Drag-sail (가항력돛을 이용한 궤도이탈장치 개발)

  • Choi, Junwoo;Kim, Si-on;Lee, Joowan;Yun, Tae-gook;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, we design and fabricate a de-orbiter using drag-sail and evaluate deployment characteristics. Without employing an actuator to deploy, the de-orbiter is activated by the SMA wire based the release mechanism and driven by the restoring force of the tape-spring. For efficient storage and deployment of drag-sail, an origami method of original ISO flasher is chosen and low priced mylar film is used as the material of the drag-sail. In addition, through the fault tree analysis method which is one of the one-shot device reliability evaluation methods, we confirm the reliability of the de-orbiter(0.997572) and the Roller failure has the highest criticality. Finally, we find feasibility of the proposed de-orbiter through the deployment demonstration of drag-sail.

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

Current Development Status of Propulsion System for Lunar Orbiter (달 탐사위성용 추진시스템 개발 현황)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Lee, Sang-Ryool
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.56-67
    • /
    • 2009
  • From 1990s, the lunar exploration programs, suspended over 20 years after the project Apollo's first successful human landing on the Moon in 1969, have been restarted according to a revived interest in Moon. In recent, several nations progress their own lunar exploration program successfully. In this report, to investigate the technical trends of the onboard propulsion system for the lunar orbiter, technical features related to the performance of the propulsion system of the lunar orbiters developed since 1990 are surveyed. In the future, it is expected that this technical report can provide a fundamental guideline for selecting a proper type of the onboard propulsion system for the domestic lunar orbiter.

  • PDF

The Effects of Moon's Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter

  • Rahoma, Walid A.;Abd El-Salam, Fawzy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.285-294
    • /
    • 2014
  • The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth's satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can't be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.

Overview of Propulsion System Performance for Lunar Orbiter and Recent Development Status (달 탐사위성용 추진시스템의 성능 및 최신 개발동향)

  • Lee, Kyun-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.90-101
    • /
    • 2011
  • From 1990s, the lunar exploration programs, suspended over 20 years after the project Apollo's first successful human landing on the Moon in 1969, have been restarted according to a revived interest in Moon. In recent, several nations progress their own lunar exploration program successfully. In this report, to investigate the technical trends of the onboard propulsion system for the lunar orbiter, technical features related to the performance of the propulsion system of the lunar orbiters developed since 1990 are surveyed. In the future, it is expected that this technical report can provide a fundamental guideline for selecting a proper type of the onboard propulsion system for the domestic lunar orbiter.

Performance Analysis of an Orbiter Air Compressor (오비터 공기 압축기 성능해석)

  • Kim, Hyun-Jin;Cho, Kwang-Myoung;Ko, Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.754-763
    • /
    • 2005
  • This paper introduces a new concept compressor in which piston orbits in the cylinder having an annular space formed between two concentric circular walls. In this configuration, two gas pockets are formed with $180^{\circ}$ phase difference: one between the wrap of the orbiting piston and the inner cylinder wall and the other between the piston wrap and the outer cylinder wall. This alternating feature of gas compression and discharge processes yields several advantages such as low torque variation and low gas pulsation. Computer simulation program has been developed to evaluate the compressor performance. The volumetric, adiabatic, and mechanical efficiencies of the orbiter compressor are calculated to be $85.6\%,\;97.2\%,\;and\;95.2\%$, respectively, when it is used as an air compressor.

Preparation of Contingency Trajectory Operation for the Korea Pathfinder Lunar Orbiter

  • Jun Bang;SeungBum Hong;Jonghee Bae;Young-Joo Song;Donghun Lee
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.217-224
    • /
    • 2023
  • The Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, successfully entered its mission orbit on December 27, 2022 (UTC), and is currently performing its mission smoothly. To mitigate potential contingencies during the flight and to navigate the spacecraft into the desired lunar orbit, the KPLO flight dynamics (FD) team analyzed major trajectory-related contingencies that could lead to the violation of mission requirements and prepared operational procedures from the perspective of trajectory and FD. This paper presents the process of preparing contingency trajectory operations for the KPLO, including the identification of trajectory contingencies, prioritization results, and the development of recovery plans and operational procedures. The prepared plans were successfully applied to address minor contingencies encountered during actual operations. The results of this study will provide valuable insights to FD engineers preparing for space exploration mission operations.

Numerical Study on the Thermal Design of Lunar Terrain Imager System Loaded on the Korea Pathfinder Lunar Orbiter (시험용 달 궤도선의 광학탑재체 시스템 열설계에 대한 수치해석적 연구)

  • Kim, Taig Young;Chang, Su-Young;Heo, Haeng-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.309-318
    • /
    • 2019
  • The thermal design of the Lunar Terrain Imager (LUTI) on the Korean Pathfinder Lunar Orbiter (KPLO) was performed and the soundness of the thermal design was verified by thermal analysis. The thermal environment of the lunar mission orbit should be reflected in the thermal design because the IR radiation of the lunar surface is important, unlike the earth orbit. The components or modules exposed to the outside of the satellite are insulated with MLI as much as possible, but the camera tube and the radiator are functionally exposed, so the thermal shield using the concept of radiation shape factor is mounted on the front to mitigate IR radiation. The IR emissivity is important in the front side of the radiator that receives little solar radiation, and components that are susceptible to thermal deformation such as the tube use a radiation heater to minimize the temperature gradient. Through the investigation of computational results, it was confirmed that the thermal design of LUTI is stable in various situations.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.