• 제목/요약/키워드: orbital angular momentum

검색결과 33건 처리시간 0.019초

착물 분자궤도함수의 일점 전개에 의한 입방결정장 분열 파라미터 10Dq의 고찰 (A Study of the Cubic Field Splitting Parameter 10Dq by Means of One-Center Expansion of Complex MO)

  • 김호징;이상엽
    • 대한화학회지
    • /
    • 제22권2호
    • /
    • pp.67-77
    • /
    • 1978
  • 착물의 분자궤도함수를 중심 금속이온의 핵을 원점으로 하는 함수들을 기저함수 집합으로 하여 일점 전개하고, 그 결과를 섭동론적인 입장에서 해석했다. $KNiF_3$의 결정구조 (perovskite structure)내에 존재하는 공유결합성이 비교적 작은 $[NiF_6]^{4-}$의 경우에도, 리간드의 배위로 인한 섭동으로 중심 금속이온의 $e_g$궤도함수와 $t_{2g}$궤도함수에 g궤도함수 이상의 각운동량을 갖는 들뜬상태 배치가 상당히 크게 섞여 들어온다는 것과, 이들 궤도함수들이 갖는 변형이 서로 다르다는 것을 발견했다. 여기서 MO계산에 의해 얻어지는 $e^*_g$궤도함수와 $t^*_{2g}$궤도함수 사이의 에너지차는 결정장 이론에서 정의되는 단일한 파라미터로서 10Dq의 의미는 갖지 못하며, 엄밀한 입장에선 그와 같은 파라미터는 정의될 수 없음을 밝혔다.

  • PDF

V700 Cygni: A Dynamically Active W UMa-type Binary Star II

  • Kim, Chun-Hwey;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권2호
    • /
    • pp.151-161
    • /
    • 2012
  • An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.

WZ Cephei: A Dynamically Active W UMa-Type Binary Star

  • Jeong, Jang-Hae;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권3호
    • /
    • pp.163-172
    • /
    • 2011
  • An intensive analysis of 185 timings of WZ Cep, including our new three timings, was made to understand the dynamical picture of this active W UMa-type binary. It was found that the orbital period of the system has complexly varied in two cyclical components superposed on a secularly downward parabola over about 80y. The downward parabola, corresponding to a secular period decrease of $-9.{^d}97{\times}10^{-8}y^{-1}$, is most probably produced by the action of both angular momentum loss (AML) due to magnetic braking and mass-transfer from the massive primary component to the secondary. The period decrease rate of $-6.^{d}72{\times}10^{-8}y^{-1}$ due to AML contributes about 67% to the observed period decrease. The mass flow of about $5.16{\times}10^{-8}M_{\odot}y^{-1}$ from the primary to the secondary results the remaining 33% period decrease. Two cyclical components have an $11.^{y}8$ period with amplitude of $0.^{d}0054$ and a $41.^{y}3$ period with amplitude of $0.^{d}0178$. It is very interesting that there seems to be exactly in a commensurable 7:2 relation between their mean motions. As the possible causes, two rival interpretations (i.e., light-time effects (LTE) by additional bodies and the Applegate model) were considered. In the LTE interpretation, the minimum masses of $0.30M_{\odot}$ for the shorter period and $0.49M_{\odot}$ for the longer one were calculated. Their contributions to the total light were at most within 2%, if they were assumed to be main-sequence stars. If the LTE explanation is true for the WZ Cep system, the 7:2 relation found between their mean motions would be interpreted as a stable 7:2 orbit resonance produced by a long-term gravitational interaction between two tertiary bodies. In the Applegate model interpretation, the deduced model parameters indicate that the mechanism could work only in the primary star for both of the two period modulations, but could not in the secondary. However, we couldn't find any meaningful relation between the light variation and the period variability from the historical light curve data. At present, we prefer the interpretation of the mechanical perturbation from the third and fourth stars as the possible cause of two cycling period changes.